Skip to main content
Log in

Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger–Horne–Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390 6660, 575 (1997)

  3. D. Bouwmeester, K. Mattle, J. W. Pan, H. Weinfurter, A. Zeilinger, and M. Zukowski, Experimental quantum teleportation of arbitrary quantum states, Appl. Phys. B 67(6), 749 (1998)

    Article  ADS  Google Scholar 

  4. M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors” Bell experiment via entanglement swapping, Phys. Rev. Lett. 71 26, 4287 (1993)

  5. J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, Experimental entanglement swapping: Entangling photons that never interacted, Phys. Rev. Lett. 80(18), 3891 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Y. B. Sheng, L. Zhou, and S. M. Zhao, Efficient twostep entanglement concentration for arbitrary W states, Phys. Rev. A 85(4), 042302 (2012)

    Article  ADS  Google Scholar 

  7. G. Gour, Faithful teleportation with partially entangled states, Phys. Rev. A 70(4), 042301 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. H. Y. Dai, P. X. Chen, and C. Z. Li, Probabilistic teleportation of an arbitrary two-particle state by a partially entangled three-particle GHZ state and W state, Opt. Commun. 231(1–6), 281 (2004)

    Article  ADS  Google Scholar 

  9. Y. H. Wang and H. S. Song, Preparation of partially entangled W state and deterministic multi-controlled teleportation, Opt. Commun. 281(3), 489 (2008)

    Article  ADS  Google Scholar 

  10. Z. Kurucz, M. Koniorczyk, and J. Janszky, Teleportation with partially entangled states, Fortschr. Phys. 49(10–11), 1019 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. D. P. Tian, Y. J. Tao, and M. Qin, Teleportation of an arbitrary two-qudit state based on the non-maximally four-qudit cluster state, Sci. China Ser. G-Phys. Mech. Astron. 51(10), 1523 (2008)

    Article  ADS  Google Scholar 

  12. N. B. An, Probabilistic teleportation of an M-quNit state by a single non-maximally entangled quNit-pair, Phys. Lett. A 372(21), 3778 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. G. Rigolin, Unity fidelity multiple teleportation using partially entangled states, J. Phys. At. Mol. Opt. Phys. 42(23), 235504 (2009)

    Article  ADS  Google Scholar 

  14. M. Jiang, H. Li, Z. K. Zhang, and J. Zeng, Faithful teleportation of multi-particle states involving multi spatially re-mote agents via probabilistic channels, Physica A 390(4), 760 (2011)

    Article  ADS  Google Scholar 

  15. M. Jiang, H. Li, Z. K. Zhang, and J. Zeng, Faithful teleportation via multi-particle quantum states in a network with many agents, Quantum Inform. Process. 11(1), 23 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. L. H. Shi, X. T. Yu, X. F. Cai, Y. X. Gong, and Z. C. Zhang, Quantum information transmission in the quantum wireless multihop network based on Werner state, Chin. Phys. B 24(5), 050308 (2015)

    Article  ADS  Google Scholar 

  17. X. F. Cai, X. T. Yu, L. H. Shi, and Z. C. Zhang, Partially entangled states bridge in quantum teleportation, Front. Phys. 9(5), 646 (2014)

    Article  Google Scholar 

  18. X. T. Yu, J. Xu, and Z. C. Zhang, Distributed wireless quantum communication networks, Chin. Phys. B 22(9), 090311 (2013)

    Article  ADS  Google Scholar 

  19. K. Wang, X. T. Yu, S. L. Lu, and Y. X. Gong, Quantum wireless multi-hop communication based on arbitrary Bell pairs and teleportation, Phys. Rev. A 89(2), 022329 (2014)

    Article  ADS  Google Scholar 

  20. P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11(4), 110303 (2016)

    Article  Google Scholar 

  21. K. Wang, Y. X. Gong, X. T. Yu, and S. L. Lu, Addendum to “Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation”, Phys. Rev. A 90(4), 044302 (2014)

    Article  ADS  Google Scholar 

  22. S. T. Cheng, C. Y. Wang, and M. H. Tao, Quantum communication for wireless wide-area networks, IEEE J. Sel. Areas Comm. 23(7), 1424 (2005)

    Article  Google Scholar 

  23. X. T. Yu, J. Xu, and Z. C. Zhang, Routing protocol for wireless ad hoc quantum communication network based on quantum teleportation, Acta Phisica Sinica 61(22), 220303 (2012)

    Google Scholar 

  24. X. T. Yu, Z. C. Zhang, and J. Xu, Distributed wireless quantum communication networks with partially entangled pairs, Chin. Phys. B 23(1), 010303 (2014)

    Article  ADS  Google Scholar 

  25. I. F. Akyildiz, X. Wang, and W. Wang, Wireless mesh networks: A survey, Comput. Netw. ISDN Syst. 47(4), 445 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Tao Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, PY., Yu, XT., Zhang, ZC. et al. Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state. Front. Phys. 12, 120302 (2017). https://doi.org/10.1007/s11467-016-0617-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0617-y

Keywords

Navigation