Skip to main content
Log in

Homomorphic encryption experiments on IBM’s cloud quantum computing platform

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Quantum computing has undergone rapid development in recent years. Owing to limitations on scalability, personal quantum computers still seem slightly unrealistic in the near future. The first practical quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol that allows computation to be performed on encrypted data without decrypting them, so it is well suited to cloud computing. Here, we first applied homomorphic encryption on IBM’s cloud quantum computer platform. In our experiments, we successfully implemented a quantum algorithm for linear equations while protecting our privacy. This demonstration opens a feasible path to the next stage of development of cloud quantum information technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Quantum computers, Nature 464(7285), 45 (2010)

    Article  ADS  Google Scholar 

  2. X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)

    Article  ADS  Google Scholar 

  3. J. Kelly, R. Barends, A. Fowler, A. Megrant, E. Jeffrey, T. White, D. Sank, J. Mutus, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I. C. Hoi, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and J. M. Martinis, State preservation by repetitive error detection in a superconducting quantum circuit, Nature 519(7541), 66 (2015)

    Article  ADS  Google Scholar 

  4. R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. White, J. Mutus, A. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature 508(7497), 500 (2014)

    Article  ADS  Google Scholar 

  5. R. Barends, L. Lamata, J. Kelly, L. García-Álvarez, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.- C. Hoi, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, E. Solano, and J. M. Martinis, Digital quantum simulation of fermionic models with a superconducting circuitm, Nature Communications 6, 7654 (2015)

    Article  ADS  Google Scholar 

  6. P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Rev. 41(2), 303 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. L. M. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance, Nature 414(6866), 883 (2001)

    Article  ADS  Google Scholar 

  8. C. Y. Lu, D. E. Browne, T. Yang, and J. W. Pan, Demonstration of a compiled version of Shor’s quantum factoring algorithm using photonic qubits, Phys. Rev. Lett. 99(25), 250504 (2007)

    Article  ADS  Google Scholar 

  9. E. Lucero, R. Barends, Y. Chen, J. Kelly, M. Mariantoni, A. Megrant, P. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. White, Y. Yin, A. N. Cleland, and J. M. Martinis, Computing prime factors with a Josephson phase qubit quantum processor, Nat. Phys. 8(10), 719 (2012)

    Article  Google Scholar 

  10. T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt, Realization of a scalable Shor algorithm, Science 351(6277), 1068 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21(6–7), 467 (1982)

    Article  MathSciNet  Google Scholar 

  12. R. Blatt and C. Roos, Quantum simulations with trapped ions, Nat. Phys. 8(4), 277 (2012)

    Article  Google Scholar 

  13. A. A. Houck, H. E. Türeci, and J. Koch, On-chip quantum simulation with superconducting circuits, Nat. Phys. 8(4), 292 (2012)

    Article  Google Scholar 

  14. A. Aspuru-Guzik and P. Walther, Photonic quantum simulators, Nat. Phys. 8(4), 285 (2012)

    Article  Google Scholar 

  15. A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. S. Barz, I. Kassal, M. Ringbauer, Y. O. Lipp, B. Dakic A. Aspuru-Guzik, and P. Walther, A two-qubit photonic quantum processor and its application to solving systems of linear equations, Sci. Rep. 4, 6115 (2014)

    Article  ADS  Google Scholar 

  17. X. D. Cai, C. Weedbrook, Z. E. Su, M. C. Chen, M. Gu, M. J. Zhu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Experimental quantum computing to solve systems of linear equations, Phys. Rev. Lett. 110(23), 230501 (2013)

    Article  ADS  Google Scholar 

  18. P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum support vector machine for big data classification, Phys. Rev. Lett. 113(13), 130503 (2014)

    Article  ADS  Google Scholar 

  19. X. D. Cai, D. Wu, Z. E. Su, M. C. Chen, X. L. Wang, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Entanglementbased machine learning on a quantum computer, Phys. Rev. Lett. 114(11), 110504 (2015)

    Article  ADS  Google Scholar 

  20. IBM, The quantum experience, http://www.research.ibm.com/quantum/, 2016

  21. S. J. Devitt, Performing quantum computing experiments in the cloud, Phys. Rev. A 94, 032329 (2016)

    Article  ADS  Google Scholar 

  22. D. Alsina and J. I. Latorre, Experimental test of Mermin inequalities on a 5-qubit quantum computer, Phys. Rev. A 94, 012314 (2016)

    Article  ADS  Google Scholar 

  23. R. Rundle, T. Tilma, J. Samson, and M. Everitt, Quantum state reconstruction made easy: A direct method for tomography, arXiv: 1605.08922 (2016)

    Google Scholar 

  24. A. Broadbent, J. Fitzsimons, and E. Kashefi, Universal blind quantum computation, in: 2009 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2009), IEEE, 2009, pp 517–526

    Chapter  Google Scholar 

  25. J. F. Fitzsimons and E. Kashefi, Unconditionally verifiable blind computation, arXiv: 1203.5217 (2012)

    Google Scholar 

  26. S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, Demonstration of blind quantum computing, Science 335(6066), 303 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  27. S. Barz, J. F. Fitzsimons, E. Kashefi, and P. Walther, Experimental verification of quantum computation, Nat. Phys. 9(11), 727 (2013)

    Article  Google Scholar 

  28. R. L. Rivest, L. Adleman, and M. L. Dertouzos, On data banks and privacy homomorphisms, Foundations of Secure Computation 4, 169 (1978)

    MathSciNet  Google Scholar 

  29. C. Gentry, A fully homomorphic encryption scheme, Ph.D. thesis, Stanford University, 2009

    MATH  Google Scholar 

  30. M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, in Annual International Conference on the Theory and Applications of Cryptographic Techniques, Springer, 2010, pp 24–43

    MATH  Google Scholar 

  31. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2010

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the use of IBM’s Quantum Experience for this work. The views expressed are those of the author and do not reflect the official policy or position of IBM or the IBM Quantum Experience team. This project was supported by the National Basic Research Program of China (Grant No. 2013CB338002), National Natural Science Foundation of China (Grant Nos. 11504430 and 61502526).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Su Bao.

Additional information

arXiv: 1612.02886.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, HL., Zhao, YW., Li, T. et al. Homomorphic encryption experiments on IBM’s cloud quantum computing platform. Front. Phys. 12, 120305 (2017). https://doi.org/10.1007/s11467-016-0643-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0643-9

Keywords

Navigation