Skip to main content
Log in

Chimera states in bipartite networks of FitzHugh–Nagumo oscillators

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Chimera states consisting of spatially coherent and incoherent domains have been observed in different topologies such as rings, spheres, and complex networks. In this paper, we investigate bipartite networks of nonlocally coupled FitzHugh–Nagumo (FHN) oscillators in which the units are allocated evenly to two layers, and FHN units interact with each other only when they are in different layers. We report the existence of chimera states in bipartite networks. Owing to the interplay between chimera states in the two layers, many types of chimera states such as in-phase chimera states, antiphase chimera states, and out-of-phase chimera states are classified. Stability diagrams of several typical chimera states in the coupling strength–coupling radius plane, which show strong multistability of chimera states, are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Kuramoto and D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst. 5, 380 (2002), arXiv: cond-mat/0210694

    Google Scholar 

  2. D. Tanaka and Y. Kuramoto, Complex Ginzburg-Landau equation with nonlocal coupling, Phys. Rev. E 68(2), 026219 (2003)

    Article  ADS  Google Scholar 

  3. S. I. Shima and Y. Kuramoto, Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators, Phys. Rev. E 69(3), 036213 (2004)

    Article  ADS  Google Scholar 

  4. D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett. 93(17), 174102 (2004)

    Article  ADS  Google Scholar 

  5. D. M. Abrams and S. H. Strogatz, Chimera states in a ring of nonlocally coupled oscillators, Int. J. Bifurcat. Chaos 16(01), 21 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. N. C. Rattenborg, C. J. Amlaner, and S. L. Lima, Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep, Neurosci. Biobehav. Rev. 24(8), 817 (2000)

    Article  Google Scholar 

  7. A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, Spontaneous synchrony in power-grid networks, Nat. Phys. 9(3), 191 (2013)

    Article  Google Scholar 

  8. J. C. González-Avella, M. G. Cosenza, and M. San Miguel, Localized coherence in two interacting populations of social agents, Physica A 399, 24 (2014)

    Article  ADS  Google Scholar 

  9. D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett. 101(8), 084103 (2008)

    Article  ADS  Google Scholar 

  10. G. C. Sethia, A. Sen, and F. M. Atay, Clustered chimera states in delay-coupled oscillator systems, Phys. Rev. Lett. 100(14), 144102 (2008)

    Article  ADS  Google Scholar 

  11. Y. Zhu, Y. Li, M. Zhang, and J. Yang, The oscillating two-cluster chimera state in non-locally coupled phase oscillators, Europhys. Lett. 97(1), 10009 (2012)

    Article  ADS  Google Scholar 

  12. C. R. Laing, The dynamics of chimera states in heterogeneous Kuramoto networks, Physica D 238(16), 1569(2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. C. H. Tian, X. Y. Zhang, Z. H. Wang, and Z. H. Liu, Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling, Front. Phys. 12(3), 128904 (2017)

    Article  Google Scholar 

  14. T. Bountis, V. G. Kanas, J. Hizanidis, and A. Bezerianos, Chimera states in a two–population network of coupled pendulum–like elements, Eur. Phys. J. Spec. Top. 223(4), 721 (2014)

    Article  MATH  Google Scholar 

  15. I. Omelchenko, Y. Maistrenko, P. Hövel, and E. Schöll, Loss of coherence in dynamical networks: Spatial chaos and chimera states, Phys. Rev. Lett. 106(23), 234102 (2011)

    Article  ADS  Google Scholar 

  16. I. Omelchenko, O. E. Omelchenko, P. Hövel, and E. Schöll, When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states, Phys. Rev. Lett. 110(22), 224101 (2013)

    Article  ADS  Google Scholar 

  17. N. Semenova, A. Zakharova, V. Anishchenko, and E. Schöll, Coherence-resonance chimeras in a network of excitable elements, Phys. Rev. Lett. 117(1), 014102 (2016)

    Article  ADS  Google Scholar 

  18. T. Isele, J. Hizanidis, A. Provata, and P. Hövel, Controlling chimera states: The influence of excitable units, Phys. Rev. E 93(2), 022217 (2016)

    Article  ADS  Google Scholar 

  19. E. A. Martens, C. R. Laing, and S. H. Strogatz, Solvable model of spiral wave chimeras, Phys. Rev. Lett. 104(4), 044101 (2010)

    Article  ADS  Google Scholar 

  20. C. Gu, G. St-Yves, and J. Davidsen, Spiral wave chimeras in complex oscillatory and chaotic systems, Phys. Rev. Lett. 111(13), 134101 (2013)

    Article  ADS  Google Scholar 

  21. M. J. Panaggio and D. M. Abrams, Chimera states on a flat torus, Phys. Rev. Lett. 110(9), 094102 (2013)

    Article  ADS  Google Scholar 

  22. M. J. Panaggio and D. M. Abrams, Chimera states on the surface of a sphere, Phys. Rev. E 91(2), 022909 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. Y. Zhu, Z. Zheng, and J. Yang, Chimera states on complex networks, Phys. Rev. E 89(2), 022914 (2014)

    Article  ADS  Google Scholar 

  24. N. Yao, Z. G. Huang, Y. C. Lai, and Z. G. Zheng, Robustness of chimera states in complex dynamical systems, Sci. Rep. 3(1), 3522 (2013)

    Article  Google Scholar 

  25. B. K. Bera, S. Majhi, D. Ghosh, and M. Perc, Chimera states: Effects of different coupling topologies, EPL 118(1), 10001 (2017)

    Article  ADS  Google Scholar 

  26. S. Ghosh, A. Kumar, A. Zakharova, and S. Jalan, Birth and death of chimera: Interplay of delay and multiplexing, EPL 115(6), 60005 (2016)

    Article  ADS  Google Scholar 

  27. V. A. Maksimenko, V. V. Makarov, B. K. Bera, D. Ghosh, S. K. Dana, M. V. Goremyko, N. S. Frolov, A. A. Koronovskii, and A. E. Hramov, Excitation and suppression of chimera states by multiplexing, Phys. Rev. E 94(5), 052205 (2016)

    Article  ADS  Google Scholar 

  28. S. Majhi, M. Perc, and D. Ghosh, Chimera states in uncoupled neurons induced by a multilayer structure, Sci. Rep. 6(1), 39033 (2016)

    Article  ADS  Google Scholar 

  29. S. Majhi, M. Perc, and D. Ghosh, Chimera states in a multilayer network of coupled and uncoupled neurons, Chaos 27(7), 073109 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. S. Rakshit, B. K. Bera, M. Perc, and D. Ghosh, Basin stability for chimera states, Sci. Rep. 7(1), 2412 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11575036 and 11505016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Yan Cheng or Jun-Zhong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, ZM., Cheng, HY., Feng, Y. et al. Chimera states in bipartite networks of FitzHugh–Nagumo oscillators. Front. Phys. 13, 130503 (2018). https://doi.org/10.1007/s11467-017-0737-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0737-z

Keywords

Navigation