Skip to main content
Log in

Controlled growth of complex polar oxide films with atomically precise molecular beam epitaxy

  • Review article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

At heterointerfaces between complex oxides with polar discontinuity, the instability-induced electric field may drive electron redistribution, causing a dramatic change in the interfacial charge density. This results in the emergence of a rich diversity of exotic physical phenomena in these quasi-two-dimensional systems, which can be further tuned by an external field. To develop novel multifunctional electronic devices, it is essential to control the growth of polar oxide films and heterointerfaces with atomic precision. In this article, we review recent progress in control techniques for oxide film growth by molecular beam epitaxy (MBE). We emphasize the importance of tuning the microscopic surface structures of polar films for developing precise growth control techniques. Taking the polar SrTiO3 (110) and (111) surfaces as examples, we show that, by keeping the surface reconstructed throughout MBE growth, high-quality layer-by-layer homoepitaxy can be realized. Because the stability of different reconstructions is determined by the surface cation concentration, the growth rate from the Sr/Ti evaporation source can be monitored in real time. A precise, automated control method is established by which insulating homoepitaxial SrTiO3 (110) and (111) films can be obtained on doped metallic substrates. The films show atomically well-defined surfaces and high dielectric performance, which allows the surface carrier concentration to be tuned in the range of ~1013/cm2. By applying the knowledge of microstructures from fundamental surface physics to film growth techniques, new opportunities are provided for material science and related research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, Artificial charge-modulation in atomic-scale perovskite titanate superlattices, Nature 419(6905), 378 (2002)

    Article  ADS  Google Scholar 

  2. A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature 427(6973), 423 (2004); corrigendum: Nature 441(7089), 120 (2006)

    Article  ADS  Google Scholar 

  3. A. Gozar, G. Logvenov, L. F. Kourkoutis, A. T. Bollinger, L. A. Giannuzzi, D. A. Muller, and I. Bozovic, High-temperature interface superconductivity between metallic and insulating copper oxides, Nature 455(7214), 782 (2008)

    Article  ADS  Google Scholar 

  4. H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Emergent phenomena at oxide interfaces, Nat. Mater. 11(2), 103 (2012)

    Article  ADS  Google Scholar 

  5. Y. W. Xie, C. Bell, Y. Hikita, and H. Y. Hwang, Tuning the electron gas at an oxide heterointerface via free surface charges, Adv. Mater. 23(15), 1744 (2011)

    Article  Google Scholar 

  6. A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J.M. Triscone, Electric field control of the LaAlO3/SrTiO3 interface ground state, Nature 456(7222), 624 (2008)

    Article  ADS  Google Scholar 

  7. C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. Andersen, C. S. Hellberg, J. Mannhart, and J. Levy, Nanoscale control of an interfacial metal-insulator transition at room temperature, Nat. Mater. 7(4), 298 (2008)

    Article  ADS  Google Scholar 

  8. S. Mathews, R. Ramesh, T. Venkatesan, and J. Benedetto, Ferroelectric field effect transistor based on epitaxial perovskite heterostructures, Science 276(5310), 238 (1997)

    Article  Google Scholar 

  9. W. Siemons, G. Koster, H. Yamamoto, W. A. Harrison, G. Lucovsky, T. H. Geballe, D. H. A. Blank, and M. R. Beasley, Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: Possibility of intrinsic doping, Phys. Rev. Lett. 98(19), 196802 (2007)

    Article  ADS  Google Scholar 

  10. D. G. Schlom and L. N. Pfeiffer, Oxide electronics: Upward mobility rocks! Nat. Mater. 9(11), 881 (2010)

    Article  ADS  Google Scholar 

  11. Z. Q. Liu, C. J. Li, W. M. Lü, X. H. Huang, Z. Huang, S. W. Zeng, X. P. Qiu, L. S. Huang, A. Annadi, J. S. Chen, J. M. D. Coey, T. Venkatesan, and Ariando, Origin of the two-dimensional electron gas at LaAlO3/SrTiO3 interfaces: The role of oxygen vacancies and electronic reconstruction, Phys. Rev. X 3(2), 021010 (2013)

    Google Scholar 

  12. J. H. Haeni, C. D. Theis, and D. G. Schlom, RHEED intensity oscillations for the stoichiometric growth of Sr-TiO3 thin films by reactive molecular beam epitaxy, J. Electroceram. 4(2–3), 385 (2000)

    Article  Google Scholar 

  13. A. Tselev, P. Ganesh, L. Qiao, W. Siemons, Z. Gai, M. D. Biegalski, A. P. Baddorf, and S. V. Kalinin, Oxygen control of atomic structure and physical properties of SrRuO3 surfaces, ACS Nano 7(5), 4403 (2013)

    Article  Google Scholar 

  14. S. Y. Jang, S. J. Moon, B. C. Jeon, and J. S. Chung, PLD growth of epitaxially-stabilized 5d perovskite SrIrO3 thin films, J. Korean Phys. Soc. 56(6), 1814 (2010)

    Article  Google Scholar 

  15. Y. S. Kim, N. Bansal, C. Chaparro, H. Gross, and S. Oh, Sr flux stability against oxidation in oxide-molecularbeam- epitaxy environment: Flux, geometry, and pressure dependence, J. Vac. Sci. Technol. A 28(2), 271 (2010)

    Article  Google Scholar 

  16. H. M. Christen, L. A. Boatner, J. D. Budai, M. F. Chisholm, L. A. Gea, P. J. Marrero, and D. P. Norton, The growth and properties of epitaxial KNbO3 thin films and KNbO3/KTaO3 superlattices, Appl. Phys. Lett. 68(11), 1488 (1996)

    Article  ADS  Google Scholar 

  17. H. J. Bae, J. Sigman, S. J. Park, Y. H. Heo, L. A. Boatner, and D. P. Norton, Growth of semiconducting KTaO3 thin films, Solid-State Electron. 48(1), 51 (2004)

    Article  ADS  Google Scholar 

  18. Z. L. Liao, F. M. Li, P. Gao, L. Li, J. D. Guo, X. Q. Pan, R. Jin, E. W. Plummer, and J. D. Zhang, Origin of the metal-insulator transition in ultrathin films of La2/3Sr2/3MnO3, Phys. Rev. B 92(12), 125123 (2015)

    Article  ADS  Google Scholar 

  19. Z. P. Li, M. Bosman, Z. Yang, P. Ren, L. Wang, L. Cao, X. Yu, C. Ke, M. B. H. Breese, A. Rusydi, W. Zhu, Z. Dong, and Y. L. Foo, Interface and surface cation stoichiometry modified by oxygen vacancies in epitaxial manganite films, Adv. Funct. Mater. 22(20), 4312 (2012)

    Article  Google Scholar 

  20. W. S. Choi, C. M. Rouleau, S. S. A. Seo, Z. Luo, H. Zhou, T. T. Fister, J. A. Eastman, P. H. Fuoss, D. D. Fong, J. Z. Tischler, G. Eres, M. F. Chisholm, and H. N. Lee, Atomic layer engineering of perovskite oxides for chemically sharp heterointerfaces, Adv. Mater. 24(48), 6423 (2012)

    Article  Google Scholar 

  21. B. Stanka, W. Hebenstreit, U. Diebold, and S. A. Chambers, Surface reconstruction of Fe3O4(001), Surf. Sci. 448(1), 49 (2000)

    Article  ADS  Google Scholar 

  22. P. K. Nayak, M. N. Hedhili, D. K. Cha, and H. N. Alshareef, High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment, Appl. Phys. Lett. 100(20), 202106 (2012); errutum: Appl. phys. Lett. 105(24), 249902 (2014)

    Article  ADS  Google Scholar 

  23. C. K. Tan, G. K. L. Goh, and W. L. Cheah, Dielectric properties of hydrothermally epitaxied I–V perovskite thin films, Thin Solid Films 515(16), 6577 (2007)

    Article  ADS  Google Scholar 

  24. T. S. Herng, S. P. Lau, S. F. Yu, H. Y. Yang, K. S. Teng, and J. S. Chen, Enhancement of ferromagnetism and stability in Cu-doped ZnO by N2O annealing, J. Phys.: Condens. Matter 19(35), 356214 (2007)

    Google Scholar 

  25. D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3, Nature 430(7000), 657 (2004)

    Article  ADS  Google Scholar 

  26. L. D. Yao, S. Inkinen, and S. van Dijken, Direct observation of oxygen vacancy-driven structural and resistive phase transitions in La2/3Sr1/3MnO3, Nat. Commun. 8, 14544 (2017)

    Article  ADS  Google Scholar 

  27. F. Lichtenberg, D. Widmer, J. G. Bednorz, T. Williams, and A. Reller, Phase-diagram of latiox - from 2d layered ferroelectric insulator to 3d weak ferromagnetic semiconductor, Z. Phys. B - Condensed Matter 82(2), 211 (1991)

    Article  ADS  Google Scholar 

  28. M. Choi, F. Oba, and I. Tanaka, Role of Ti antisitelike defects in SrTiO3, Phys. Rev. Lett. 103(18), 185502 (2009)

    Article  ADS  Google Scholar 

  29. F. Yang, Q. Zhang, Z. Yang, J. Gu, Y. Liang, W. Li, W. Wang, K. Jin, L. Gu, and J. Guo, Room-temperature ferroelectricity of SrTiO3 films modulated by cation concentration, Appl. Phys. Lett. 107(8), 082904 (2015)

    Article  ADS  Google Scholar 

  30. E. Breckenfeld, N. Bronn, J. Karthik, A. R. Damodaran, S. Lee, N. Mason, and L. W. Martin, Effect of growth induced (non) stoichiometry on interfacial conductance in LaAlO3/SrTiO3, Phys. Rev. Lett. 110(19), 196804 (2013)

    Article  ADS  Google Scholar 

  31. H. Yamada, M. Kawasaki, T. Lottermoser, T. Arima, and Y. Tokura, LaMnO3/SrMnO3 interfaces with coupled charge-spin-orbital modulation, Appl. Phys. Lett. 89(5), 052506 (2006)

    Article  ADS  Google Scholar 

  32. N. Nakagawa, H. Y. Hwang, and D. A. Muller, Why some interfaces cannot be sharp, Nat. Mater. 5(3), 204 (2006)

    Article  ADS  Google Scholar 

  33. J. Chakhalian, J. W. Freeland, A. J. Millis, C. Panagopoulos, and J. M. Rondinelli, Emergent properties in plane view: Strong correlations at oxide interfaces, Rev. Mod. Phys. 86(4), 1189 (2014)

    Article  ADS  Google Scholar 

  34. S. Okamoto and A. J. Millis, Electronic reconstruction at an interface between a Mott insulator and a band insulator, Nature 428(6983), 630 (2004)

    Article  ADS  Google Scholar 

  35. J. Chakhalian, J. W. Freeland, H. U. Habermeier, G. Cristiani, G. Khaliullin, M. van Veenendaal, and B. Keimer, Orbital reconstruction and covalent bonding at an oxide interface, Science 318(5853), 1114 (2007)

    Article  ADS  Google Scholar 

  36. Q. Y. Wang, Z. Li, W.H. Zhang, Z.C. Zhang, J.S. Zhang, W. Li, H. Ding, Y.B. Ou, P. Deng, K. Chang, J. Wen, C.L. Song, K. He, J.F. Jia, S.H. Ji, Y.Y. Wang, L.L. Wang, X. Chen, X.C. Ma, and Q.K. Xue, Interfaceinduced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3, Chin. Phys. Lett. 29(3), 037402 (2012)

    Article  ADS  Google Scholar 

  37. M. P. Warusawithana, C. Cen, C. R. Sleasman, J. C. Woicik, Y. Li, L. F. Kourkoutis, J. A. Klug, H. Li, P. Ryan, L.P. Wang, M. Bedzyk, D. A. Muller, L.Q. Chen, J. Levy, and D. G. Schlom, A ferroelectric oxide made directly on silicon, Science 324(5925), 367 (2009)

    Article  ADS  Google Scholar 

  38. Z. M. Wang, J. G. Feng, Y. Yang, Y. Yao, L. Gu, F. Yang, Q. L. Guo, and J. D. Guo, Cation stoichiometry optimization of SrTiO3 (110) thin films with atomic precision in homogeneous molecular beam epitaxy, Appl. Phys. Lett. 100(5), 051602 (2012)

    Article  ADS  Google Scholar 

  39. J. G. Feng, F. Yang, Z. M. Wang, Y. Yang, L. Gu, J. D. Zhang, and J. D. Guo, Growth of SrTiO3 (110) film by oxide molecular beam epitaxy with feedback control, AIP Adv. 2(4), 041407 (2012)

    Article  ADS  Google Scholar 

  40. S. Phark, Y. J. Chang, and T. Won Noh, Selective growth of perovskite oxides on SrTiO3 (001) by control of surface reconstructions, Appl. Phys. Lett. 98(16), 161908 (2011)

    Article  ADS  Google Scholar 

  41. Y. J. Chang and S. H. Phark, Atomic-scale visualization of initial growth of perovskites on SrTiO3(001) using scanning tunneling microscope, Curr. Appl. Phys. 17(5), 640 (2017)

    Article  ADS  Google Scholar 

  42. R. A. Betts and C. W. Pitt, Growth of thin-film lithium-niobate by molecular-beam epitaxy, Electron. Lett. 21(21), 960 (1985)

    Article  Google Scholar 

  43. M. Petrucci, C. W. Pitt, and P. J. Dobson, RHEED studies on Z-cut LiNbO3, Electron. Lett. 22(18), 954 (1986)

    Article  Google Scholar 

  44. J. R. Jr Arthur, Interaction of Ga and As2 molecular beams with GaAs surfaces, J. Appl. Phys. 39(8), 4032 (1968)

    Article  ADS  Google Scholar 

  45. D. G. Schlom and J. S. Harris, MBE Growth of High Tc Superconductors, in: Molecular Beam Epitaxy: Applications to Key Materials, Ed. RFC Farrow, Park Ridge, 1995, p. 505

    Chapter  Google Scholar 

  46. Y. S. Kim, N. Bansal, and S. Oh, Crucible aperture: An effective way to reduce source oxidation in oxide molecular beam epitaxy process, J. Vac. Sci. Technol. A 28(4), 600 (2010)

    Article  Google Scholar 

  47. Y. S. Kim, N. Bansal, and S. Oh, Simple self-gettering differential-pump for minimizing source oxidation in oxide-MBE environment, J. Vac. Sci. Technol. A 29(4), 041505 (2011)

    Article  Google Scholar 

  48. H. T. Zhang, L. R. Dedon, L. W. Martin, and R. Engel-Herbert, Self-regulated growth of LaVO3 thin films by hybrid molecular beam epitaxy, Appl. Phys. Lett. 106(23), 233102 (2015)

    Article  ADS  Google Scholar 

  49. B. Jalan, R. Engel-Herbert, N. J. Wright, and S. Stemmer, Growth of high-quality SrTiO3 films using a hybrid molecular beam epitaxy approach, J. Vac. Sci. Technol. A 27(3), 461 (2009)

    Article  Google Scholar 

  50. P. Fisher, H. Du, M. Skowronski, P. A. Salvador, O. Maksimov, and X. Weng, Stoichiometric, nonstoichiometric, and locally nonstoichiometric SrTiO3 films grown by molecular beam epitaxy, J. Appl. Phys. 103(1), 013519 (2008)

    Article  ADS  Google Scholar 

  51. Z. Yu, Y. Liang, C. Overgaard, X. Hu, J. Curless, H. Li, Y. Wei, B. Craigo, D. Jordan, R. Droopad, J. Finder, K. Eisenbeiser, D. Marshall, K. Moore, J. Kulik, and P. Fejes, Advances in heteroepitaxy of oxides on silicon, Thin Solid Films 462–463, 51 (2004)

    Article  Google Scholar 

  52. C. P. I. Ichimiya Ayahiko, Reflection High Energy Election Diffraction, Cambridge: Cambridge University Press, 2004

    Book  Google Scholar 

  53. P. Moetakef, D. G. Ouellette, J. Y. Zhang, T. A. Cain, S. J. Allen, and S. Stemmer, Growth and properties of GdTiO3 films prepared by hybrid molecular beam epitaxy, J. Cryst. Growth 355(1), 166 (2012)

    Article  ADS  Google Scholar 

  54. Y. Liang, W. T. Li, S. Y. Zhang, C. J. Lin, C. Li, Y. Yao, Y. Q. Li, H. Yang, and J. D. Guo, Homoepitaxial SrTiO3(111) film with high dielectric performance and atomically well-defined surface, Sci. Rep. 5(1), 10634 (2015)

    Article  ADS  Google Scholar 

  55. M. P. Warusawithana, C. Richter, J. A. Mundy, P. Roy, J. Ludwig, S. Paetel, T. Heeg, A. A. Pawlicki, L. F. Kourkoutis, M. Zheng, M. Lee, B. Mulcahy, W. Zander, Y. Zhu, J. Schubert, J. N. Eckstein, D. A. Muller, C. S. Hellberg, J. Mannhart, and D. G. Schlom, LaAlO3 stoichiometry is key to electron liquid formation at LaAlO3/SrTiO3 interfaces, Nat. Commun. 4, 2351 (2013)

    Article  ADS  Google Scholar 

  56. J. Goniakowski, F. Finocchi, and C. Noguera, Polarity of oxide surfaces and nanostructures, Rep. Prog. Phys. 71(1), 016501 (2008)

    Article  ADS  Google Scholar 

  57. J. A. Enterkin, A. K. Subramanian, B. C. Russell, M. R. Castell, K. R. Poeppelmeier, and L. D. Marks, A homologous series of structures on the surface of SrTiO3 (110), Nat. Mater. 9(3), 245 (2010)

    Article  ADS  Google Scholar 

  58. R. Bachelet, F. Valle, I. C. Infante, F. Sanchez, and J. Fontcuberta, Step formation, faceting, and bunching in atomically flat SrTiO3 (110) surfaces, Appl. Phys. Lett. 91(25), 251904 (2007)

    Article  ADS  Google Scholar 

  59. J. Brunen and J. Zegenhagen, Investigation of the Sr-TiO3 (110) surface by means of LEED, scanning tunneling microscopy and Auger spectroscopy, Surf. Sci. 389(1–3), 349 (1997)

    Article  ADS  Google Scholar 

  60. H. Bando, Y. Aiura, Y. Haruyama, T. Shimizu, and Y. Nishihara, Structure and electronic states on reduced SrTiO3 (110) surface observed by scanning-tunnelingmicroscopy and spectroscopy, J. Vac. Sci. Technol. B 13(3), 1150 (1995)

    Article  Google Scholar 

  61. B. C. Russell and M. R. Castell, Reconstructions on the polar SrTiO3 (110) surface: Analysis using STM, LEED, and AES, Phys. Rev. B 77(24), 245414 (2008)

    Article  ADS  Google Scholar 

  62. Z. M. Wang, K. H. Wu, Q. L. Guo, and J. D. Guo, Tuning the termination of the SrTiO3 (110) surface by Ar+ sputtering, Appl. Phys. Lett. 95(2), 021912 (2009)

    Article  ADS  Google Scholar 

  63. F. M. Li, Z. M. Wang, S. Meng, Y. B. Sun, J. L. Yang, Q. L. Guo, and J. D. Guo, Reversible transition between thermodynamically stable phases with low density of oxygen vacancies on the SrTiO3 (110) surface, Phys. Rev. Lett. 107(3), 036103 (2011)

    Article  ADS  Google Scholar 

  64. Z. M. Wang, F. Yang, Z. Q. Zhang, Y. Y. Tang, J. G. Feng, K. H. Wu, Q. L. Guo, and J. D. Guo, Evolution of the surface structures on SrTiO3 (110) tuned by Ti or Sr concentration, Phys. Rev. B 83(15), 155453 (2011)

    Article  ADS  Google Scholar 

  65. Y. Haruyama, Y. Aiura, H. Bando, Y. Nishihara, and H. Kato, Annealing temperature dependence on the electronic structure of the reduced SrTiO3 (111) surface, J. Electron Spectroscopy and Related Phenomena 88–91, 695 (1998)

    Article  Google Scholar 

  66. S. Sekiguchi, M. Fujimoto, M. G. Kang, S. Koizumi, S. B. Cho, and J. Tanaka, Structure analysis of SrTiO3 (111) polar surfaces, Jpn. J. Appl. Phys. 37(7), 4140 (1998)

    Article  ADS  Google Scholar 

  67. S. Sekiguchi, M. Fujimoto, M. Nomura, S. B. Cho, J. Tanaka, T. Nishihara, M. G. Kang, and H. H. Park, Atomic force microscopic observation of SrTiO3 polar surface, Solid State Ion. 108(1–4), 73 (1998)

    Article  Google Scholar 

  68. H. Tanaka and T. Kawai, Surface structure of reduced SrTiO3 (111) observed by scanning tunneling microscopy, Surf. Sci. 365(2), 437 (1996)

    Article  ADS  Google Scholar 

  69. B. C. Russell and M. R. Castell, (√13×√13)R13:9° and (√7×√7)R19:1° reconstructions of the polar SrTiO3 (111) surface, Phys. Rev. B 75(15), 155433 (2007)

    Article  ADS  Google Scholar 

  70. B. C. Russell and M. R. Castell, Surface of sputtered and annealed polar SrTiO3 (111): TiOx-rich (n × n) reconstructions, J. Phys. Chem. C 112(16), 6538 (2008)

    Article  Google Scholar 

  71. J. G. Feng, X. T. Zhu, and J. D. Guo, Reconstructions on SrTiO3 (111) surface tuned by Ti/Sr deposition, Surf. Sci. 614, 38 (2013)

    Article  ADS  Google Scholar 

  72. Z. M. Wang, F. M. Li, S. Meng, J. D. Zhang, E. W. Plummer, U. Diebold, and J. D. Guo, Strain-induced defect superstructure on the SrTiO3 (110) surface, Phys. Rev. Lett. 111(5), 056101 (2013)

    Article  ADS  Google Scholar 

  73. K. Shimoyama, K. Kubo, T. Maeda, and K. Yamabe, Epitaxial growth of BaTiO3 thin film on SrTiO3 substrate in ultra-high vacuum without introducing oxidant, Jpn. J. Appl. Phys. 40(5a), L463 (2001)

    Article  ADS  Google Scholar 

  74. K. Shimoyama, M. Kiyohara, A. Uedono, and K. Yamabe, Homoepitaxial growth of SrTiO3 in an ultrahigh vacuum with automatic feeding of oxygen from the substrate at temperatures as low as 370°C, Jpn. J. Appl. Phys. 41(3a), L269 (2002)

    Article  ADS  Google Scholar 

  75. K. Shimoyama, M. Kiyohara, K. Kubo, A. Uedono, and K. Yamabe, Epitaxial growth of BaTiO3/SrTiO3 structures on SrTiO3 substrate with automatic feeding of oxygen from the substrate, J. Appl. Phys. 92(8), 4625 (2002)

    Article  ADS  Google Scholar 

  76. R. A. De Souza, V. Metlenko, D. Park, and T. E. Weirich, Behavior of oxygen vacancies in single-crystal SrTiO3: Equilibrium distribution and diffusion kinetics, Phys. Rev. B 85(17), 174109 (2012)

    Article  ADS  Google Scholar 

  77. F. M. Li, F. Yang, Y. Liang, S. Li, Z. Yang, Q. Zhang, W. Li, X. Zhu, L. Gu, J. Zhang, E. W. Plummer, and J. Guo, δ-doping of oxygen vacancies dictated by thermodynamics in epitaxial SrTiO3 films, AIP Adv. 7(6), 065001 (2017)

    Article  ADS  Google Scholar 

  78. L. D. Marks, A. N. Chiaramonti, S. U. Rahman, and M. R. Castell, Transition from order to configurational disorder for surface reconstructions on SrTiO3 (111), Phys. Rev. Lett. 114(22), 226101 (2015)

    Article  ADS  Google Scholar 

  79. H. Z. Cheng and A. Selloni, Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile, Phys. Rev. B 79(9), 092101 (2009)

    Article  ADS  Google Scholar 

  80. J. Shin, A. Y. Borisevich, V. Meunier, J. Zhou, E. W. Plummer, S. V. Kalinin, and A. P. Baddorf, Oxygen- Induced Surface Reconstruction of SrRuO3 and Its Effect on the BaTiO3 Interface, ACS Nano 4(7), 4190 (2010)

    Article  Google Scholar 

  81. L. M. Peng, Electron atomic scattering factors and scattering potentials of crystals, Micron 30(6), 625 (1999)

    Article  Google Scholar 

  82. B. Kubota, Decomposition of higher oxides of chromium under various pressures of oxygen, J. Am. Ceram. Soc. 44(5), 239 (1961)

    Article  Google Scholar 

  83. R. N. Song, M. H. Hu, X. R. Chen, and J. D. Guo, Epitaxial growth and thermostability of cubic and hexagonal SrMnO3 films on SrTiO3 (111), Front. Phys. 10(3), 321 (2015)

    Article  Google Scholar 

  84. M. Huijben, A. Brinkman, G. Koster, G. Rijnders, H. Hilgenkamp, and D. H. A. Blank, Structure-property relation of SrTiO3/LaAlO3 interfaces, Adv. Mater. 21(17), 1665 (2009)

    Article  Google Scholar 

  85. R. Tromp, G. W. Rubloff, P. Balk, F. K. Legoues, and E. J. Vanloenen, High-temperature SiO2 decomposition at the SiO2/Si interface, Phys. Rev. Lett. 55(21), 2332 (1985)

    Article  ADS  Google Scholar 

  86. Y. W. Xie and H. Y. Hwang, Tuning the electrons at the LaAlO3/SrTiO3 interface: From growth to beyond growth, Chin. Phys. B 22(12), 127301 (2013)

    Article  Google Scholar 

  87. W. T. Li, Y. Liang, W. H. Wang, F. Yang, and J. D. Guo, Precise control of LaTiO3 (110) film growth by molecular beam epitaxy and surface termination of the polar film, Acta Physica Sinica 64(7), 078103 (2015)

    Google Scholar 

  88. I. C. Infante, J. O. Osso, F. Sanchez, and J. Fontcuberta, Tuning in-plane magnetic anisotropy in (110) La2/3Ca1/3MnO3 films by anisotropic strain relaxation, Appl. Phys. Lett. 92(1), 012508 (2008)

    Article  ADS  Google Scholar 

  89. J. X. Ma, X. F. Liu, T. Lin, G. Y. Gao, J. P. Zhang, W. B. Wu, X. G. Li, and J. Shi, Interface ferromagnetism in (110)-oriented La0:7Sr0:3MnO3/SrTiO3 ultrathin superlattices, Phys. Rev. B 79(17), 174424 (2009)

    Article  ADS  Google Scholar 

  90. A. Roy and D. Vanderbilt, Theory of prospective perovskite ferroelectrics with double Rocksalt order, Phys. Rev. B 83(13), 134116 (2011)

    Article  ADS  Google Scholar 

  91. J. Chang, K. Lee, M. H. Jung, J. H. Kwon, M. Kim, and S. K. Kim, Emergence of room-temperature magnetic ordering in artificially fabricated ordered-doubleperovskite Sr2FeRuO6, Chem. Mater. 23(11), 2693 (2011)

    Article  Google Scholar 

  92. K. Y. Yang, W. G. Zhu, D. Xiao, S. Okamoto, Z. Q. Wang, and Y. Ran, Possible interaction-driven topological phases in (111) bilayers of LaNiO3, Phys. Rev. B 84(20), 201104(R) (2011)

    Article  ADS  Google Scholar 

  93. D. Xiao, W. G. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures, Nat. Commun. 2, 596 (2011)

    Article  ADS  Google Scholar 

  94. R. Mishra, J. R. Soliz, P. M. Woodward, and W. Windl, Ca2MnRuO6: Magnetic order arising from chemical chaos, Chem. Mater. 24(14), 2757 (2012)

    Article  Google Scholar 

  95. F. D. M. Haldane, Model for a quantum Hall-effect without Landau-Levels–condensed-matter realization of the parity anomaly, Phys. Rev. Lett. 61(18), 2015 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  96. D. Doennig, W. E. Pickett, and R. Pentcheva, Massive symmetry breaking in LaAlO3/SrTiO3 (111) quantum wells: A three-orbital strongly correlated generalization of graphene, Phys. Rev. Lett. 111(12), 126804 (2013)

    Article  ADS  Google Scholar 

  97. C. R. Ma, M. Liu, C. L. Chen, Y. Lin, Y. R. Li, J. S. Horwitz, J. C. Jiang, E. I. Meletis, and Q. Y. Zhang, The origin of local strain in highly epitaxial oxide thin films, Sci. Rep. 3(1), 3092 (2013)

    Article  ADS  Google Scholar 

  98. D. G. Schlom, L. Q. Chen, X. Q. Pan, A. Schmehl, and M. A. Zurbuchen, A thin film approach to engineering functionality into oxides, J. Am. Ceram. Soc. 91(8), 2429 (2008)

    Article  Google Scholar 

  99. J. Liu, M. Kareev, S. Prosandeev, B. Gray, P. Ryan, J. W. Freeland, and J. Chakhalian, Effect of polar discontinuity on the growth of LaNiO3/LaAlO3 superlattices, Appl. Phys. Lett. 96(13), 133111 (2010)

    Article  ADS  Google Scholar 

  100. J. L. Blok, X. Wan, G. Koster, D. H. A. Blank, and G. Rijnders, Epitaxial oxide growth on polar (111) surfaces, Appl. Phys. Lett. 99(15), 151917 (2011)

    Article  ADS  Google Scholar 

  101. Y. Mukunoki, N. Nakagawa, T. Susaki, and H. Y. Hwang, Atomically flat (110) SrTiO3 and heteroepitaxy, Appl. Phys. Lett. 86(17), 171908 (2005)

    Article  ADS  Google Scholar 

  102. G. Koster, G. J. H. M. Rijnders, D. H. A. Blank, and H. Rogalla, Imposed layer-by-layer growth by pulsed laser interval deposition, Appl. Phys. Lett. 74(24), 3729 (1999)

    Article  ADS  Google Scholar 

  103. M. Kareev, S. Prosandeev, B. Gray, J. Liu, P. Ryan, A. Kareev, E. Ju Moon, and J. Chakhalian, Sub-monolayer nucleation and growth of complex oxides at high supersaturation and rapid flux modulation, J. Appl. Phys. 109(11), 114303 (2011)

    Article  ADS  Google Scholar 

  104. B. Dam, J. H. Rector, J. Johansson, J. Huijbregtse, and D. G. De Groot, Mechanism of incongruent ablation of SrTiO3, J. Appl. Phys. 83(6), 3386 (1998)

    Article  ADS  Google Scholar 

  105. M. Hu, Q. Zhang, L. Gu, Q. Guo, Y. Cao, M. Kareev, J. Chakhalian, and J. Guo, Reconstruction-stabilized epitaxy of LaCoO3/SrTiO3 (111) heterostructures by pulsed laser deposition, Appl. Phys. Lett. 112(3), 031603 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11474334, 11634016, and 11404381), the National Key R&D Program of the Ministry of Science and Technology of China (Grant Nos. 2017YFA0303600 and 2014CB921001), the Open Research Fund Program of the State Key Laboratory of Low- Dimensional Quantum Physics, and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07030100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Dong Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Liang, Y., Liu, LX. et al. Controlled growth of complex polar oxide films with atomically precise molecular beam epitaxy. Front. Phys. 13, 136802 (2018). https://doi.org/10.1007/s11467-018-0769-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0769-z

Keywords

PACS numbers

Navigation