Skip to main content
Log in

General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Hyperentanglement has attracted considerable attention recently because of its high-capacity for long-distance quantum communication. In this study, we present a hyperentanglement concentration protocol (hyper-ECP) for nonlocal three-photon systems in the polarization, spatial-mode, and time-bin partially hyperentangled Greenberger–Horne–Zeilinger (GHZ) states using the Schmidt projection method. In our hyper-ECP, the three distant parties must perform the parity-check measurements on the polarization, spatial-mode, and time-bin degrees of freedom, respectively, using linear optical elements and Pockels cells, and only two identical nonlocal photon systems are required. This hyper-ECP can be directly extended to the N-photon hyperentangled GHZ states, and the success probability of this general hyper-ECP for a nonlocal N-photon system is the optimal one, regardless of the photon number N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. X. F. Cai, X. T. Yu, L. H. Shi, and Z. C. Zhang, Partially entangled states bridge in quantum teleportation, Front. Phys. 9(5), 646 (2014)

    Article  Google Scholar 

  3. P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11(4), 110303 (2016)

    Article  Google Scholar 

  4. C. H. Bennett and S. J. Wiesner, Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states, Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. X. S. Liu, G. L. Long, D. M. Tong, and F. Li, General scheme for superdense coding between multiparties, Phys. Rev. A 65(2), 022304 (2002)

    Article  ADS  Google Scholar 

  6. A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. C. H. Bennett, G. Brassard, and N. D. Mermin, Quantum cryptography without Bell’s theorem, Phys. Rev. Lett. 68(5), 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. X. H. Li, F. G. Deng, and H. Y. Zhou, Efficient quantum key distribution over a collective noise channel, Phys. Rev. A 78(2), 022321 (2008)

    Article  ADS  Google Scholar 

  9. F. Steinlechner, S. Ecker, M. Fink, B. Liu, J. Bavaresco, M. Huber, T. Scheidl, and R. Ursin, Distribution of high-dimensional entanglement via an intra-city freespace link, Nat. Commun. 8, 15971 (2017)

    Article  ADS  Google Scholar 

  10. M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. G. L. Long and X. S. Liu, Theoretically efficient highcapacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  12. F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  13. F. G. Deng and G. L. Long, Secure direct communication with a quantum one-time pad, Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  14. J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, Experimental quantum secure direct communication with single photons, Light Sci. Appl. 5(9), e16144 (2016)

    Article  Google Scholar 

  15. W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Quantum secure direct communication with quantum memory, Phys. Rev. Lett. 118(22), 220501 (2017)

    Article  ADS  Google Scholar 

  16. X. H. Li, Quantum secure direct communication, Acta Physica Sinica 64, 160307 (2015)

    Google Scholar 

  17. F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, Experimental long-distance quantum secure direct communication, Sci. Bull. 62(22), 1519 (2017)

    Article  Google Scholar 

  18. L. Zhou and Y. B. Sheng, Recyclable amplification protocol for the single-photon entangled state, Laser Phys. Lett. 12(4), 045203 (2015)

    Article  ADS  Google Scholar 

  19. L. Zhou and Y. B. Sheng, Complete logic Bell-state analysis assisted with photonic Faraday rotation, Phys. Rev. A 92(4), 042314 (2015)

    Article  ADS  Google Scholar 

  20. Y. B. Sheng and L. Zhou, Two-step complete polarization logic Bell-state analysis, Sci. Rep. 5(1), 13453 (2015)

    Article  ADS  Google Scholar 

  21. P. G. Kwiat, Hyper-entangled states, J. Mod. Opt. 44(11–12), 2173 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. T. Yang, Q. Zhang, J. Zhang, J. Yin, Z. Zhao, M. Zukowski, Z. B. Chen, and J. W. Pan, All-versusnothing violation of local realism by two-photon, fourdimensional entanglement, Phys. Rev. Lett. 95(24), 240406 (2005)

    Article  Google Scholar 

  23. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, Generation of hyperentangled photon pairs, Phys. Rev. Lett. 95(26), 260501 (2005)

    Article  ADS  Google Scholar 

  24. M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, Polarization-momentum hyperentangled states: realization and characterization, Phys. Rev. A 72(5), 052110 (2005)

    Article  ADS  Google Scholar 

  25. R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, and A. Cabello, Experimental entanglement and nonlocality of a two-photon six-qubit cluster state, Phys. Rev. Lett. 103(16), 160401 (2009)

    Article  ADS  Google Scholar 

  26. G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, Hyperentanglement of two photons in three degrees of freedom, Phys. Rev. A 79(3), 030301 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. D. Bhatti, J. von Zanthier, and G. S. Agarwal, Entanglement of polarization and orbital angular momentum, Phys. Rev. A 91(6), 062303 (2015)

    Article  ADS  Google Scholar 

  28. F. G. Deng, B. C. Ren, and X. H. Li, Quantum hyperentanglement and its applications in quantum information processing, Sci. Bull. 62(1), 46 (2017)

    Article  Google Scholar 

  29. B. C. Ren and F. G. Deng, Hyper-parallel photonic quantum computation with coupled quantum dots, Sci. Rep. 4(1), 4623 (2015)

    Article  Google Scholar 

  30. B. C. Ren, G. Y. Wang, and F. G. Deng, Universal hyperparallel hybrid photonic quantum gates with dipoleinduced transparency in the weak-coupling regime, Phys. Rev. A 91(3), 032328 (2015)

    Article  ADS  Google Scholar 

  31. T. Li and G. L. Long, Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities, Phys. Rev. A 94(2), 022343 (2016)

    Article  ADS  Google Scholar 

  32. H. R. Wei, F. G. Deng, and G. L. Long, Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities, Opt. Express 24(16), 18619 (2016)

    Article  ADS  Google Scholar 

  33. B. C. Ren and F. G. Deng, Robust hyperparallel photonic quantum entangling gate with cavity QED, Opt. Express 25(10), 10863 (2017)

    Article  ADS  Google Scholar 

  34. Y. B. Sheng, F. G. Deng, and G. L. Long, Complete hyperentangled-Bell-state analysis for quantum communication, Phys. Rev. A 82(3), 032318 (2010)

    Article  ADS  Google Scholar 

  35. B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities, Opt. Express 20(22), 24664 (2012)

    Article  ADS  Google Scholar 

  36. T. C. Wei, J. T. Barreiro, and P. G. Kwiat, Hyperentangled Bell-state analysis, Phys. Rev. A 75(6), 060305 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  37. T. J. Wang, Y. Lu, and G. L. Long, Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities, Phys. Rev. A 86(4), 042337 (2012)

    Article  ADS  Google Scholar 

  38. Q. Liu and M. Zhang, Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators, Phys. Rev. A 91(6), 062321 (2015)

    Article  ADS  Google Scholar 

  39. G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities, Opt. Express 24(25), 28444 (2016)

    Article  ADS  Google Scholar 

  40. T. J. Wang, S. Y. Song, and G. L. Long, Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities, Phys. Rev. A 85(6), 062311 (2012)

    Article  ADS  Google Scholar 

  41. P. G. Kwiat and H. Weinfurter, Embedded Bell-state analysis, Phys. Rev. A 58(4), R2623 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  42. S. P. Walborn, S. P’adua, and C. H. Monken, Hyperentanglement-assisted Bell-state analysis, Phys. Rev. A 68(4), 042313 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  43. C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, Complete deterministic linear optics Bell state analysis, Phys. Rev. Lett. 96(19), 190501 (2006)

    Article  ADS  Google Scholar 

  44. M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, Complete and detrministic deicrimination of polarization Bell states assisted by momentum entanglement, Phys. Rev. A 75(4), 042317 (2007)

    Article  ADS  Google Scholar 

  45. Y. B. Sheng and F. G. Deng, Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentangledment, Phys. Rev. A 81(3), 032307 (2010)

    Article  ADS  Google Scholar 

  46. Y. B. Sheng and F. G. Deng, One-step deterministic polarization-entanglement purification using spatial entanglement, Phys. Rev. A 82(4), 044305 (2010)

    Article  ADS  Google Scholar 

  47. X. H. Li, Deterministic polarization-entanglement purification using spatial entanglement, Phys. Rev. A 82(4), 044304 (2010)

    Article  ADS  Google Scholar 

  48. F. G. Deng, One-step error correction for multipartite polarization entanglement, Phys. Rev. A 83(6), 062316 (2011)

    Article  ADS  Google Scholar 

  49. Y. B. Sheng and L. Zhou, Deterministic polarization entanglement purification using time-bin entanglement, Laser Phys. Lett. 11(8), 085203 (2014)

    Article  ADS  Google Scholar 

  50. B. C. Ren, F. F. Du, and F. G. Deng, Twostep hyperentanglement purification with the quantumstatejoining method, Phys. Rev. A 90(5), 052309 (2014)

    Article  ADS  Google Scholar 

  51. G. Y. Wang, Q. Liu, and F. G. Deng, Hyperentanglement purification for two-photon six-qubit quantum systems, Phys. Rev. A 94(3), 032319 (2016)

    Article  ADS  Google Scholar 

  52. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A 53(4), 2046 (1996)

    Article  ADS  Google Scholar 

  53. Z. Zhao, J. W. Pan, and M. S. Zhan, Practical scheme for entanglement concentration, Phys. Rev. A 64(1), 014301 (2001)

    Article  ADS  Google Scholar 

  54. T. Yamamoto, M. Koashi, and N. Imoto, Concentration and purification scheme for two partially entangled photon pairs, Phys. Rev. A 64(1), 012304 (2001)

    Article  ADS  Google Scholar 

  55. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics, Phys. Rev. A 77(6), 062325 (2008)

    Article  ADS  Google Scholar 

  56. C. Wang, Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system, Phys. Rev. A 86(1), 012323 (2012)

    Article  ADS  Google Scholar 

  57. S. Bose, V. Vedral, and P. L. Knight, Purification via entanglement swapping and conserved entanglement, Phys. Rev. A 60(1), 194 (1999)

    Article  ADS  Google Scholar 

  58. B. S. Shi, Y. K. Jiang, and G. C. Guo, Optimal entanglement purification via entanglement swapping, Phys. Rev. A 62(5), 054301 (2000)

    Article  ADS  Google Scholar 

  59. Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs, Phys. Rev. A 85(1), 012307 (2012)

    Article  ADS  Google Scholar 

  60. F. G. Deng, Optimal nonlocal multipartite entanglement concentration based on projection measurements, Phys. Rev. A 85(2), 022311 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  61. Y. B. Sheng, L. Zhou, and S. M. Zhao, Efficient twostep entanglement concentration for arbitraryWstates, Phys. Rev. A 85(4), 042302 (2012)

    Article  ADS  Google Scholar 

  62. C. Cao, C. Wang, L. Y. He, and R. Zhang, Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime, Opt. Express 21(4), 4093 (2013)

    Article  ADS  Google Scholar 

  63. X. Yan, Y. F. Yu, and Z. M. Zhang, Entanglement concentration for a non-maximally entangled four-photon cluster state, Front. Phys. 9(5), 640 (2014)

    Article  Google Scholar 

  64. C. Cao, H. Ding, Y. Li, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, Efficient multipartite entanglement concentration protocol for nitrogen-vacancy center and microresonator coupled systems, Quantum Inform. Process. 14(4), 1265 (2015)

    Article  ADS  MATH  Google Scholar 

  65. C. Wang, W. W. Shen, S. C. Mi, Y. Zhang, and T. J. Wang, Concentration and distribution of entanglement based on valley qubits system in graphene, Sci. Bull. 60(23), 2016 (2015)

    Article  Google Scholar 

  66. C. Cao, T. J. Wang, R. Zhang, and C. Wang, Cluster state entanglement generation and concentration on nitrogen-vacancy centers in decoherence-free subspace, Laser Phys. Lett. 12(3), 036001 (2015)

    Article  ADS  Google Scholar 

  67. Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, Efficient N-particle W state concentration with different parity check gates, Sci. China Phys. Mech. Astron. 58(6), 060301 (2015)

    Article  Google Scholar 

  68. C. Shukla, A. Banerjee, and A. Pathak, Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and nine families of 4-qubit entangled states, Quantum Inform. Process. 14(6), 2077 (2015)

    MATH  Google Scholar 

  69. J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang, Efficient entanglement concentration for concatenated Greenberger–Horne–Zeilinger state with the cross-Kerr nonlinearity, Quantum Inform. Process. 15(4), 1669 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements, Sci. China Phys. Mech. Astron. 59(10), 100315 (2016)

    Article  Google Scholar 

  71. B. C. Ren, F. F. Du, and F. G. Deng, Hyperentanglement concentration for two-photon four-qubit systems with linear optics, Phys. Rev. A 88(1), 012302 (2013)

    Article  ADS  Google Scholar 

  72. B. C. Ren and F. G. Deng, Hyperentanglement purication and concentration assisted by diamond NV centers inside photonic crystal cavities, Laser Phys. Lett. 10(11), 115201 (2013)

    Article  ADS  Google Scholar 

  73. B. C. Ren and G. L. Long, General hyperentanglement concentration for photon systems assisted by quantum dot spins inside optical microcavities, Opt. Express 22(6), 6547 (2014)

    Article  ADS  Google Scholar 

  74. X. H. Li and S. Ghose, Hyperconcentration for multipartite entanglement via linear optics, Laser Phys. Lett. 11(12), 125201 (2014)

    Article  ADS  Google Scholar 

  75. X. H. Li and S. Ghose, Efficient hyperconcentration of nonlocal multipartite entanglement via the cross-Kerr nonlinearity, Opt. Express 23(3), 3550 (2015)

    Article  ADS  Google Scholar 

  76. B. C. Ren and G. L. Long, Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates, Sci. Rep. 5(1), 16444 (2015)

    Article  ADS  Google Scholar 

  77. X. H. Li and S. Ghose, Hyperentanglement concentration for time-bin and polarization hyperentangled photons, Phys. Rev. A 91(6), 062302 (2015)

    Article  ADS  Google Scholar 

  78. C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, Nonlocal hyperconcentration on entangled photons using photonic module system, Ann. Phys. 369, 128 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. L. L. Fan, Y. Xia, and J. Song, Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics, Quantum Inform. Process. 13(9), 1967 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. H. J. Liu, Y. Xia, and J. Song, Efficient hyperentanglement concentration for N-particle Greenberger–Horne–Zeilinger state assisted by weak cross-Kerr nonlinearity, Quantum Inform. Process. 15(5), 2033 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. F. Z. Wu, G. J. Yang, H. B. Wang, J. Xiong, F. Alzahrani, A. Hobiny, and F. G. Deng, High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states, Sci. China Phys. Mech. Astron. 60(12), 120313 (2017)

    Article  ADS  Google Scholar 

  82. Y. Soudagar, F. Bussières, G. Berlín, S. Lacroix, J. M. Fernandez, and N. Godbout, Cluster-state quantum computing in optical fibers, J. Opt. Soc. Am. B 24(2), 226 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  83. D. Kalamidas, Single-photon quantum error rejection and correction with linear optics, Phys. Lett. A 343(5), 331 (2005)

    Article  ADS  MATH  Google Scholar 

  84. B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, Hyperentanglement concentration of nonlocal two photon six-qubit systems with linear optics, Ann. Phys. 385, 86 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants Nos. 11604226, 11674033, and 11474026, and the Science and Technology Program Foundation of the Beijing Municipal Commission of Education of China under Grant No. KM201710028005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Cang Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Ren, BC., Wang, A.H. et al. General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics. Front. Phys. 13, 130315 (2018). https://doi.org/10.1007/s11467-018-0801-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0801-3

Keywords

Navigation