Skip to main content
Log in

Importance of Metal–Adsorbate Interactions for the Surface-enhanced Raman Scattering of Molecules Adsorbed on Plasmonic Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The interaction between adsorbates of different nature and plasmonic nanoparticles is reviewed here on the basis of the work done in our laboratory in the past few years. The paper is structured for analyzing the interaction of adsorbates with metal nanoparticles as function of the interacting atom (O, N, or S) and the adsorbate conformation. In the study of the adsorption of molecular species on metals, it is necessary to take into account that different interaction mechanisms are possible, leading to the existence of different molecular forms (isomers or conformers). These forms can be evidenced by changing the excitation wavelength, due to a resonant selection of these wavelengths. Charge-transfer complexes and electrostatic interactions are the usual driving forces involved in the interaction of adsorbates on metal surfaces when these metallic systems are used in wet conditions. The understanding of the metal–adsorbate interaction is crucial in the surface functionalization of metal surfaces, which has a growing importance in the development of sensing systems or optoelectronic devices. In relation to this, special attention is paid in this work to the study of the adsorption of calixarene host molecules on plasmonic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aroca R (2006) Surface-enhanced vibrational spectroscopy. Wiley, Chichester

    Google Scholar 

  2. Knoll W, Fritzsche W (2005) Nanoparticles for biotechnology applications. IEE Proc Nanobiotechnol 152:1

    Article  Google Scholar 

  3. Popov AK, Brummer J, Tanke RS, Taft G, Loth M, Langlois R, Wruck A, Schmitz R (2006) Synthesis of isolated silver nanoparticles and their aggregates manipulated by light. Laser Phys Lett 11:546–552

    Article  Google Scholar 

  4. Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36:485–496

    Article  Google Scholar 

  5. Burstein E, Chen YJ, Chen CY, Lundquist S, Tosatti E (1979) Surface-enhanced Raman spectroscopy: a brief retrospective. Solid State Commun 29:567–570

    Article  Google Scholar 

  6. Kovacs GJ, Loutfy RO, Vincent PS, Jennings C, Aroca R (1986) Distance dependence of SERS enhancement factor from Langmuir-Blodgett monolayers on metal island films — Evidence for the electromagnetic mechanism. Langmuir 2:689–694

    Article  Google Scholar 

  7. Otto A, Mrozek I, Grabhorn H, Akemann W (1992) Surface-enhanced Raman-scattering. J Phys Condens Matter 4:1143-1212

    Article  Google Scholar 

  8. Houk KN, Leach AG, Kim SP, Zhang X (2003) Binding affinities of host-guest, protein-ligand, and protein-transition-state complexes. Angew Chem Int Ed Engl 42:4872–4897

    Article  Google Scholar 

  9. Cañamares MV, García-Ramos JV, Gómez-Varga D, Domingo C, Sanchez-Cortes S (2005) Comparative study of the morphology, aggregation, adherence to glass, and surface-enhanced Raman scattering activity of silver nanoparticles prepared by chemical reduction of Ag+ using citrate and hydroxylamine. Langmuir 21:8546–8553

    Article  Google Scholar 

  10. Garrell RL, Shaw KD, Krim S (1983) Surface enhanced Raman-Spectroscopy of halide-ions on colloidal silver — Morphology and coverage dependence. Surf Sci 124:613–624

    Article  Google Scholar 

  11. Shipway AN, Katz E, Willner I, (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem Phys Chem 1:18–52

    Google Scholar 

  12. Gao P, Weaver MJ (1986) Metal adsorbate vibrational frequencies as a probe of surface bonding — Halides and pseudohalides at gold electrodes. J Phys Chem 90:4057–4063

    Article  Google Scholar 

  13. Moskovits M, Suh JS (1984) Surface selection-rules for Surface-enhanced Raman-spectroscopy — Calculations and application to the surface-enhanced Raman-spectrum of phthalazine on silver. J Phys Chem 88:5526–5530

    Article  Google Scholar 

  14. Gao XP, Davies JP, Weaver MJ (1990) A test of surface selection-rules for surface-enhanced Raman-scattering — The orientation of adsorbed benzene and monosubstituted benzenes on gold. J Phys Chem 94:6858–6864

    Article  Google Scholar 

  15. Carter DA, Pemberteon JE (1992) Surface-enhanced Raman-scattering of the acid-base forms of imidazole on Ag. Langmuir 8:1218–1225

    Article  Google Scholar 

  16. Aroca RF, Alvarez-Puebla RA, Pieczonka N, Sanchez-Cortes S, Garcia-Ramos JV (2005) Surface-enhanced Raman scattering on colloidal nanostructures. Adv Colloid Interface Sci 116:45–61

    Google Scholar 

  17. Sanchez-Cortes S (2004) SERS on colloids. Opt Pur Apl 37:35–42

    Google Scholar 

  18. Cañamares MV, García-Ramos JV, Gómez-Varga D, Domingo C, Sanchez-Cortes S (2007) Ag nanoparticles prepared by laser photoreduction as substrates for in situ surface-enhanced Raman scattering analysis of dyes. Langmuir 23:5210–5215

    Article  Google Scholar 

  19. Domingo C, Resta V, Sanchez-Cortes S, García-Ramos JV, Gonzalo J (2007) Pulsed laser deposited Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy. J Phys Chem C 111:8149–8152

    Article  Google Scholar 

  20. Gui J, Devine TM (1989) Influence of hydroxide on the SERS of water and chloride. Surf Sci 224:525–542

    Article  Google Scholar 

  21. Nichols RJ, Burgess I, Young KL, Zamlynny V, Lipkowski J (2004) A quantitative evaluation of the adsorption of citrate on Au(111) using SNIFTIRS. J Electroanal Chem 563:33–39

    Article  Google Scholar 

  22. Sanchez-Cortes S, Francioso O, García-Ramos JV, Ciavatta C, Gessa C (2001) Catechol polymerization in the presence of silver surface. Coll Surf A 176:177–184

    Article  Google Scholar 

  23. Sanchez-Cortes S, García-Ramos JV (2000) FT surface-enhanced Raman evidence of the oxidative condensation reactions of caffeic acid in solution and on silver surface. Appl Spectrosc 54:230–238

    Article  Google Scholar 

  24. Alvarez-Ros M, Sanchez-Cortes S, Francioso O, García-Ramos JV (2001) Catalytic modification of gallic acid on a silver surface studied by surface-enhanced Raman spectroscopy. J Raman Spectrosc 32:143–145

    Article  Google Scholar 

  25. Fabriciova G, García-Ramos JV, Miskovsky P, Sanchez-Cortes S (2002) Adsorption mechanism and acidic behavior of naphthazarin on Ag nanoparticles studied by Raman spectroscopy. Vib Spectrosc 30:203–212

    Article  Google Scholar 

  26. Cañamares MV, García-Ramos JV, Domingo C, Sanchez-Cortes S (2004) Surface-enhanced Raman scattering study of the adsorption of the anthraquinone pigment alizarin on Ag nanoparticles. J Raman Spectrosc 35:921–927

    Article  Google Scholar 

  27. Jurasekova Z, García-Ramos JV, Domingo C, Sanchez-Cortes S (2006) Surface-enhanced Raman scattering of flavonoids. J Raman Spectrosc 37:1239–1241

    Article  Google Scholar 

  28. Minero C, Mariella G, Maurino V, Vione D, Pelizzetti E (2000) Photocatalytic transformation of organic compounds in the presence of inorganic ions. 2. Competitive reactions of phenol and alcohols an a titanium dioxide-fluoride system. Langmuir 16:8964–8972

    Article  Google Scholar 

  29. Fleischmann FM, Hendra PJ, McQuillan AJ (1974) Raman-spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  Google Scholar 

  30. Muniz-Miranda M (1996) Surface EnhancedRaman Scattering of 4,4-Bipyridine Adsorbed on Smooth Copper, Silver and Aluminium Surfaces Activated by Deposited Silver Particles. J Raman Spectrosc 27:435–437

    Article  Google Scholar 

  31. Arenas JF, Woolley MS, Otero JC, Marcos JI (1996) Charge-transfer processes in surface-enhanced Raman scattering. Franck-Condon active vibrations of pyrazine. J Phys Chem 100:3199–3206

    Article  Google Scholar 

  32. Herne TM, Ahern AM, Garrell RL (1991) Surface-enhanced Raman-spectroscopy of peptides - Preferential n-terminal adsorption on colloidal silver. J Am Chem Soc 113:846–854

    Article  Google Scholar 

  33. Castro JL, López-Ramírez MR, López-Tocón I, Otero JC (2003) Vibrational study of the metal-adsorbate interaction of phenylacetic acid and alpha-phenylglycine on silver surfaces. J Colloid Interface Sci 263:357–363

    Article  Google Scholar 

  34. Oh ST, Kim K, Kim MS (1991) Adsorption and surface-reaction of acridine in silver sol — Surface-enhanced Raman-spectroscopic study. J Phys Chem 95:8844–8849

    Article  Google Scholar 

  35. Levi G, Pantigny J, Marsault JP, Aubard J (1993) SER spectra of acridine and acridinium ions in colloidal silver sols — Electrolytes and ph effects. J Raman Spectrosc 24:745–752

    Article  Google Scholar 

  36. Murza A, Sanchez-Cortes S, García-Ramos JV (1998) Fluorescence and surface-enhanced Raman study of 9-aminoacridine in relation to its aggregation and excimer emission in aqueous solution and on silver surface. Biospectroscopy 4:327–339

    Article  Google Scholar 

  37. Sanchez-Cortes S, García-Ramos JV (1992) SERS of cytosine and its methylated derivatives on metal colloids. J Raman Spectrosc 23:61–66

    Article  Google Scholar 

  38. Camafeita LE, Sanchez-Cortes S, García-Ramos JV (1995) SERS of cytosine and its methylated derivatives on gold sols. J Raman Spectrosc 26:149–154

    Article  Google Scholar 

  39. Sanchez-Cortes S, García-Ramos JV (2001) Influence of coverage in the surface-enhanced Raman scattering of cytosine and its methyl derivatives on metal colloids: chloride and pH effects. Surf Sci 473:133–142

    Article  Google Scholar 

  40. Feng Q, Cotton TM (1986) Surface-enhanced resonance Raman-study of the photoreduction of methylviologen on a p-inp semiconductor electrode. J Phys Chem 90:983–987

    Article  Google Scholar 

  41. Millán JI, Garcia-Ramos JV, Sanchez-Cortes S, Rodríguez-Amaro R (2003) Adsorption of lucigenin on Ag nanoparticles studied by surface-enhanced Raman spectroscopy: effect of different anions on the intensification of Raman spectra. J Raman Spectrosc 34:227–233

    Article  Google Scholar 

  42. Millán JI, Garcia-Ramos JV, Sanchez-Cortes S (2003) Study of the adsorption and electrochemical reduction of lucigenin on Ag electrodes by surface-enhanced Raman spectroscopy. J Electroanal Chem 556:83–92

    Article  Google Scholar 

  43. Carrasco EA, Campos-Vallette FM, Leyton P, Diaz GF, Clavijo RE, García-Ramos JV, Inostroza N, Domingo C, Sanchez-Cortes S, Koch R (2003) Study of the interaction of pollutant nitro polycyclic aromatic hydrocarbons with different metallic surfaces by surface-enhanced vibrational spectroscopy (SERS and SEIR). J Phys Chem 107:9611–9619

    Google Scholar 

  44. Domingo C, García-Ramos JV, Sanchez-Cortes S, Aznarez JA (2004) Surface-enhanced infrared absorption of DMIP on gold-germanium substrates coated by self-assembled monolayers. J Mol Struct 661:419–427

    Google Scholar 

  45. Seelenbinder JA, Brown CW (2002) Comparison of organic self-assembled monolayers as modified substrates for surface-enhanced infrared absorption spectroscopy. Appl Spectrosc 56:295–299

    Article  Google Scholar 

  46. Sanchez-Cortes S, Vasina M, Francioso O, García-Ramos JV (1998) Raman and surface-enhanced Raman spectroscopy of dithiocarbamate fungicides. Vib Spectrosc 17:133–144

    Article  Google Scholar 

  47. Sanchez-Cortes S, Domingo C, García-Ramos JV, Aznarez JA (2001) Surface-enhanced vibrational study (SEIR and SERS) of dithiocarbamate pesticides on gold films. Langmuir 17:1157–1162

    Article  Google Scholar 

  48. Sanchez-Cortes S, Molina M, García-Ramos JV, Carmona P (1991) Interactions of cytidine derivatives with metals as revealed by surface-enhanced Raman-spectroscopy. J Raman Spectrosc 22:819–824

    Article  Google Scholar 

  49. Rivas L, Sanchez-Cortes S, García-Ramos JV (2002) Conformational study of AZT in aqueous solution and adsorbed on a silver surface by means of Raman spectroscopy. J Raman Spectrosc 33:6–9

    Article  Google Scholar 

  50. Dijkstra S, Benevides J, Thomas GJ Jr (1991) Raman spectral studies of nucleic-acids .40. Solution conformations of nucleoside analogs exhibiting antiviral activity against human-immunodeficiency-virus. J Mol Struct 242:283–301

    Article  Google Scholar 

  51. He J, Zhou H, Wan F, Lu Y, Xue G (2005) SERS study of the high quality conducting polythiophene film. Vib Spectrosc 31:265–269

    Article  Google Scholar 

  52. Martin F, Prieto AC, De Saja JA, Aroca R (1998) SERS study of the pyrrole polymerization. J Mol Struct 174:363–368

    Article  Google Scholar 

  53. Pérez-Méndez M, Marsal-Berenguel R, Sanchez-Cortes S (2004) Adsorption of a cholesteric liquid crystal polyester on silver nanoparticles studied by surface enhanced Raman scattering and micro Raman spectroscopy. Appl Spectrosc 58:562–569

    Article  Google Scholar 

  54. Leyton P, Sanchez-Cortes S, García-Ramos JV, Domingo C, Campos-Vallette M, Saitz C, Clavijo RE (2004) Selective molecular recognition of polycyclic aromatic hydrocarbons (PAHs) on calix[4]arene-functionalized Ag nanoparticles by surface-enhanced Raman scattering. J Phys Chem B 108:17484–17490

    Article  Google Scholar 

  55. Leyton P, Domingo C, Sanchez-Cortes S, Campos-Vallette M, Diaz GF, García-Ramos JV (2007) Reflection-absorption IR and surface-enhanced IR spectroscopy of tetracarboethoxy t-butyl-calix[4]arene, as a host molecule with potential applications in sensor devices. Vib Spectrosc 43:358–365

    Article  Google Scholar 

  56. Guerrini L, García-Ramos JV, Domingo C, Sanchez-Cortes S (2006) Functionalization of Ag nanoparticles with dithiocarbamate calix[4]arene as an effective supramolecular host for the surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons. Langmuir 22:10924–10926

    Article  Google Scholar 

  57. Sanchez-Cortes S, García-Ramos JV (1998) Anomalous Raman bands appearing in surface-enhanced Raman spectra. J Raman Spectrosc 29:365–371

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge projects FIS2004-00108 from the Spanish Ministerio de Educación y Ciencia, MICROSERES S-0505/TIC-0191 from Comunidad de Madrid, Fondecyt 1040640 and 1070078 from Conicyt, and C-13879 from Fundación Andes. L. G. acknowledges an I3P fellowship from Consejo Superior de Investigaciones Científicas and Z. J. acknowledges the European Community’s Sixth Framework Programme for Marie Curie Early Stage Research Training Fellowship (contract number MEST-CT-2004-513915.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sanchez-Cortes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrini, L., Jurasekova, Z., Domingo, C. et al. Importance of Metal–Adsorbate Interactions for the Surface-enhanced Raman Scattering of Molecules Adsorbed on Plasmonic Nanoparticles. Plasmonics 2, 147–156 (2007). https://doi.org/10.1007/s11468-007-9044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-007-9044-9

Keywords

Navigation