Skip to main content
Log in

Clustering of Silver Nanoclusters Embedded in Soda Lime Glasses Using Ionic Exchange and Helium Ion Bombardment

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Silver nanocluster precipitation in AR Schott glass by subsequently silver ionic exchange and helium bombardment was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-visible optical absorption. Helium ion bombardment was used to induce local defects in the matrix and to promote the growth of the silver nano-aggregates. The typical implantation depth was estimated at 1 μm by Trim simulation. SEM investigations give us the concentration profile of the exchanged samples and the maximum depth. Optical absorption was performed to visualize the effect of the He+ fluence on the ion exchanged sample spectra and compared to the Drude model varying size and matrix refractive index. TEM was used to evaluate the distribution size of the silver nanoparticles, their structure by diffraction pattern, size, and shape and to correlate it to the experimental and theoretical absorption curves. The TEM observations prove that we are in a confinement regime with a particle size below the mean free path of the silver bulk metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bond GC (1985) Surf Sci 156(2):966–981

    Article  CAS  Google Scholar 

  2. Mitrikas G, Deligiannakis Y, Trapalis CC, Boukos N, Kordas G (1998) J Sol–Gel Sci Technol 13:503

    Article  CAS  Google Scholar 

  3. Faccio D, Di Trapani P, Borsella E, Gonella F, Mazzoldi P, Malvezzi AM (1998) Europhys Lett 43:213

    Article  CAS  Google Scholar 

  4. Kokkoris M, Trapalis CC, Kossionides S, Vlastou R, Nsouli B, Grotzschel R, Kordas G, Paradellis TH (2002) Nucl Instrum Methods Phys Res B 188:67

    Article  CAS  Google Scholar 

  5. Kawashita M, Tsuneyama S, Miyaja F, Kokudo T, Yamamoto K (2000) Biomaterials 21:393

    Article  CAS  Google Scholar 

  6. Gangopadhyay P, Kesavamoorthy R, Nair KGM, Dhandapani R (2000) J Appl Phys 88:4975

    Article  CAS  Google Scholar 

  7. Epifani M, Giannini C, Vasanelli L, Am J (2000) Cerm Soc 83:2385

    Article  CAS  Google Scholar 

  8. Miotello A, De Marchi G, Mattei G, Mazzoldi P, Quaranta A (2000) Appl Phys A 70:415

    Article  CAS  Google Scholar 

  9. Gangopadhyay P, Magudapathy P, Kesavamoorthy R, Panigra BK, Nair KGM, Satyam PV (2004) Chem Phys Lett 388:416

    Article  CAS  Google Scholar 

  10. Zenga H, Zhaoa C, Qiub J, Yanga Y, Chena G (2007) J Cryst Growth 300:519–522

    Article  CAS  Google Scholar 

  11. Zeng HD, J-R QIU, X-W JIANG, S-L QU, C-S ZHU, F-X GAN (2003) Chin Phys Letter 20(6):932

    Article  Google Scholar 

  12. Caccavale F, De Marchi G, Gonella F, Mazzoldi P, Meneghini C, Quaratan A, Arnold GW, Battaglin G, Mattei G (1995) Nucl Instrum Methods Phys Res B 96:382–386

    Article  CAS  Google Scholar 

  13. De Marchi G, Caccavale F, Gonella F, Mattei G, Mazzoldi P, Battaglin G, Quaranta A (1996) Appl Phys A 63:403

    Article  Google Scholar 

  14. Bottani CE, Li Bassi A, Stella A, Cheyssac P, Kofman R (2001) Europhys Lett 56:86

    Article  Google Scholar 

  15. Yukselici H, Persans PD, Hayes TM (1995) Phys Rev B 52:11763

    Article  CAS  Google Scholar 

  16. Lifshitz IM, Slyosov VV (1961) J Phys Chem Solids 19:35–50

    Article  Google Scholar 

  17. Wagner C (1961) Z Elektrochem 65:581

    CAS  Google Scholar 

  18. Philibert J (1985) Diffusion et transport de matière dans les solides. Les éditions de Physique, Les Ulis

    Google Scholar 

  19. Snyder VA, Alkemper J, Voorhees PW (2000) Acta mater 48:2689

    Article  CAS  Google Scholar 

  20. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, Hoboken

    Google Scholar 

  21. Palpant B (1998) Thesis, Univ. Claude Bernard, Lyon 1

  22. Pinçon N, Palpant B, Prot D, Charron E, Debrus S (2002) Eur Phys J D 19:395

    Article  Google Scholar 

  23. Pinchuk A, Kreibig U, Hilger A (2004) Surf Sci 557:269–280

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ph. Blondeau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blondeau, J.P., Veron, O., Catan, F. et al. Clustering of Silver Nanoclusters Embedded in Soda Lime Glasses Using Ionic Exchange and Helium Ion Bombardment. Plasmonics 4, 245–252 (2009). https://doi.org/10.1007/s11468-009-9097-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-009-9097-z

Keywords

Navigation