Skip to main content
Log in

UV-Vis-NIR Laser Desorption/Ionization of Synthetic Polymers Assisted by Gold Nanospheres, Nanorods and Nanostars

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The laser desorption/ionization (LDI) assisted by gold nanospheres, nanorods and nanostars has been investigated. Laser fluence thresholds for the appearance of cationized adducts of a polydispersed polyether standard (polyethylenglycol PEG600) have been determined at the near ultraviolet–visible–near infrared wavelengths delivered by a Nd:YAG laser (266, 355, 532, 1,064 nm). The results demonstrate the efficiency of surface plasmon excitation to assist laser desorption/ionizaton at laser wavelengths extending to the visible and near infrared, with advantages with respect to conventional LDI techniques using ultraviolet wavelengths. A close correlation is found between the optical absorbance of the nanoparticles and the LDI thresholds, although for the nanospheres plasmonic excitation in the visible appears to be more efficient than non-plasmonic excitation at shorter UV wavelengths. The recorded molecular weight distributions for the PEG600 standard show that the LDI process tends to be less efficient for the heavier components of the polymer mixture, presumably as a consequence of their stronger bonding to the nanoparticle substrate. The role of the coating agent of the nanoparticles in the observed LDI behavior is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T (1988) Protein and polymer analyses up to m/z 100000 by laser ionization time–of–flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153. doi:10.1002/rcm.1290020802

    Article  CAS  Google Scholar 

  2. Sunner J, Dratz E, Chen YCh (1995) Graphite-]-assisted laser desorption/ionization time–of–flight mass spectrometry of peptides and proteins from liquid solutions. Anal Chem 67:4335–4342. doi:10.1021/ac00119a021

    Article  CAS  Google Scholar 

  3. Owega S, Lai EPC, Bawagan ADO (1998) Surface plasmon resonance-laser desorption/ionization time–of–flight mass spectrometry. Anal Chem 70:2360–2365. doi:10.1021/ac971166u

    Article  CAS  Google Scholar 

  4. Schürenberg M, Dreisewerd K, Hillenkamp F (1999) Laser desorption/ionization mass spectrometry of peptides and proteins with particle suspension matrixes. Anal Chem 71:221–229. doi:10.1021/ac980634c

    Article  Google Scholar 

  5. McLean JA, Stumpo KA, Russell DH (2005) Size–selected (2–10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides. J Am Chem Soc 127:5304–5305. doi:10.1021/ja043907w

    Article  CAS  Google Scholar 

  6. Vanderpuije BNY, Han G, Rotello VM, Vachet RW (2006) Mixed monolayer-protected gold nanoclusters as selective peptide extraction agents for MALDI-MS analysis. Anal Chem 78:5491–5496. doi:10.1021/ac0604181

    Article  CAS  Google Scholar 

  7. Hua L, Chen JR, Ge L, Tan SN (2007) Silver nanoparticles as matrix for laser desorption/ionization of peptides. J Nanopart Res 9:1133–1138. doi:10.1007/s11051-007-9244-4

    Article  CAS  Google Scholar 

  8. Su CL, Tseng WL (2007) Gold nanoparticles as assisted matrix for determining neutral small carbohydrates through laser desorption/ionization time–of–flight mass spectrometry. Anal Chem 79:1626–1633. doi:10.1021/ac061747w

    Article  CAS  Google Scholar 

  9. Chen LC, Yonehama J, Ueda T, Hori H, Hirakoa K (2007) Visible-laser desorption/ionization on gold nanostructures. J Mass Spectrom 42:346–353. doi:10.1002/jms.1165

    Article  CAS  Google Scholar 

  10. Chen LC, Ueda T, Sagisaka M, Hori, H, Hirakoa K (2007) Visible laser desorption/ionization mass spectrometry using gold nanorods. J Phys Chem C 111:2409–2415. doi:10.1021/jp065540i

    Article  CAS  Google Scholar 

  11. Spencer MT, Furutani H, Oldenburg SJ, Darlington TK, Prather KA (2008) Gold nanoparticles as a matrix for visible–wavelength single-particle matrix-assisted laser desorption/ionization mass spectrometry of small biomolecules. J Phys Chem C 112:4803–4090. doi:10.1021/jp076688k

    Article  Google Scholar 

  12. Castellana ET, Russell DH (2007) Tailoring nanoparticle surface chemistry to enhance laser desorption ionization of peptides and proteins. Nano Lett 7:3023–3025. doi:10.1021/nl071469w

    Article  CAS  Google Scholar 

  13. Kawasaki H, Yonezawa T, Watanabe T, Arakawa R (2007) Platinum nanoflowers for surface–assisted laser desorption/ ionization mass spectrometry of biomolecules. J Chem Phys C 11:16278–16283. doi:10.1021/jp075159d

    Article  Google Scholar 

  14. Kawasaki H, Sugitani T, Watanabe T, Yonezawa T, Moriwaki H, Arakawa R (2008) Layer-by-layer self-assembled mutilayer films of gold nanoparticles for surface-assisted laser desorption/ionization mass spectrometry. Anal Chem 80:7524–7533. doi:10.1021/ac800789t

    Article  CAS  Google Scholar 

  15. Chen LC, Mori K, Hori H, Hirakoa K (2009) Au-assisted visible laser MALDI. Int J Mass Spectrom 279:41–46. doi:10.1016/j.ijms.2008.10.005

    Article  CAS  Google Scholar 

  16. Yonezawa T, Kawasaki H, Tarui A, Watanabe T, Arakawa R, Shimada T, Mafune F (2009) Detailed investigation on the possibility of nanoparticles of various metal elements for surface-assisted laser desorption/ionization mass spectrometry. Anal Sci 25:339–346. ISSN: 0910-6340

    Article  CAS  Google Scholar 

  17. Duan J, Linman MJ, Chen ChY, Cheng QJ (2009) CHCA–modified Au nanoparticles for laser desorption ionization mass spectrometric analysis of peptides. J Am Soc Mass Spectrom 20:1530–1539. doi:10.1016/j.jasms.2009.04.009

    Article  CAS  Google Scholar 

  18. Cioffi N, Colaianni L, Pilolli R, Calvano CD, Palmisano F, Zambonin PG (2009) Silver nanofractals: electrochemical synthesis, XPS characterization and application in LDI-MSAnal. Bioanal Chem 394:1375–1383. doi:10.1007/s00216-009-2820-y

    Article  CAS  Google Scholar 

  19. Huang YF, Chang HT (2006) Nile red–adsorbed gold nanoparticle matrixes for determining aminothiols through surface–assisted laser desorption/ionization mass spectrometry. Anal Chem 78:1485–1493. doi:10.1021/ac0517646

    Article  CAS  Google Scholar 

  20. Shrivas K, Wu HF (2008) Applications of silver nanoparticles capped with different functional groups as the matrix and affinity probes in surface–assisted laser desorption/ionization time–of–flight and atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry for rapid analysis of sulfur drugs and biothiols in human urine. Rapid Commun Mass Spectrom 22:2863–2872. doi:10.1002/rcm.3681

    Article  CAS  Google Scholar 

  21. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum–size–related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. doi:10.1021/cr030698+

    Article  CAS  Google Scholar 

  22. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453. doi:10.1038/nmat2162

    Article  CAS  Google Scholar 

  23. Guo Z, Ganawi AAA, Liu Q, He L (2006) Nanomaterials in mass spectrometry ionization and prospects for biological application. Anal Bioanal Chem 308:584–592. doi:10.1007/s00216-005-0125-3

    Article  Google Scholar 

  24. Batoy SMAB, Akhmetova E, Miladinovic S, Smeal J, Wilkins CL (2008) Developments in MALDI mass spectrometry: the quest for the perfect matrix. Appl Spectrosc Rev 43:485–550. doi:10.1080/05704920802108198

    Article  CAS  Google Scholar 

  25. Link S, El–Sayed MA (2000) Shape and size dependence of radiative, non–radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453. doi:10.1080/01442350050034180

    Article  CAS  Google Scholar 

  26. Link S, El–Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366. doi:10.1146/annurev.physchem.54.011002.103759

    Article  CAS  Google Scholar 

  27. Zhao J, Pinchuk AO, McMahon JM, Li S, Ausman LK, Atkinson AL, Shatz GC (2008) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Chem Res 41:1710–1720. doi:10.1021/ar800028j

    Article  CAS  Google Scholar 

  28. Moores A, Goettmann F (2006) The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J Chem 30:1121–1132. doi:10.1039/b604038c

    Article  CAS  Google Scholar 

  29. Pelton M, Aizpurua J, Bryant G (2008) Metal–nanoparticle plasmonics. Laser & Photon Rev 2:136–159. doi:10.1002/lpor.200810003

    Article  CAS  Google Scholar 

  30. Hayat M (1989) Colloidal gold: principles, methods and applications. Academic, San Diego

    Google Scholar 

  31. Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B Biointerfaces 58:3–7. doi:10.1016/j.colsurfb.2006.08.005

    Article  CAS  Google Scholar 

  32. Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414–6420. doi:10.1021/la049463z

    Article  CAS  Google Scholar 

  33. Zweifel DA, Wei A (2005) Sulfide–arrested growth of gold nanorods. Chem Mater 17:4259–4261. doi:10.1021/cm0506858

    Article  Google Scholar 

  34. Hao F, Nehl CL, Hafner JH, Nordlander P (2007) Plasmon resonances of a gold nanostar. Nano Lett 7:729–732. doi:10.1021/nl062969c

    Article  CAS  Google Scholar 

  35. Khouri CG, Vo–Dinh T (2008) Gold nanostars for surface–enhanced raman scattering: synthesis, characterization and optimization. J Phys Chem C 112:18849–18859. doi:10.1021/jp8054747

    Google Scholar 

  36. Hortal AR, Hurtado P, Martínez–Haya B, Arregui A, Bañares L (2008) Solvent-free MALDI investigation of the cationization of linear polyethers with alkali metals. J Phys Chem B 112:8530–8535. doi:10.1021/jp802089r

    Article  CAS  Google Scholar 

  37. Montaudo G, Samperi F, Montaudo MS (2006) Characterization of synthetic polymers by MALDI–MS. Prog Polym Sci 31:277–357. doi:10.1016/j.progpolymsci.2005.12.001

    Article  CAS  Google Scholar 

  38. Cheng WL, Dong SJ, Wang EK (2003) Iodine–induced gold–nanoparticle fusion/fragmentation/aggregation and iodine–linked nanostructured assemblies on a glass substrate. Angew Chem Int Ed 42:449–452. doi:10.1002/anie.200390136

    Article  CAS  Google Scholar 

  39. Stumpo KA, Russell DH (2009) Anion effects on ionization efficiency using gold nanoparticles as matrices for LDI-MS. J Phys Chem C 113:1641–1647. doi:10.1021/jp804032z

    Article  CAS  Google Scholar 

  40. Nehl CL, Liao H, Hafner JH (2006) Optical properties of star–shaped gold nanoparticles. Nano Lett 6:683–688. doi:10.1021/nl052409y

    Article  CAS  Google Scholar 

  41. Armentrout PB (1999) Cation–ether complexes in the gas phase: thermodynamic insight into molecular recognition. Int J Mass Spectrom 193:227–240. doi:10.1016/S1387-3806(99)00165-7

    Article  CAS  Google Scholar 

  42. Robinson EW, Garcia DE, Leib RD, Williams ER (2006) Enhanced mixture analysis of poly(ethylene glycol) using high–field asymmetric waveform ion mobility spectrometry combined with fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 78:2190–2198. doi:10.1021/ac051709x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding is acknowledged from the Government of Spain through project CTQ2009-10477, from the Andalusian Health Council through project PI-0070/2008, and from the Innovation and Science Council through projects P07-FQM-02600 and P07-FQM-02595.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Martínez–Haya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gámez, F., Hurtado, P., Castillo, P.M. et al. UV-Vis-NIR Laser Desorption/Ionization of Synthetic Polymers Assisted by Gold Nanospheres, Nanorods and Nanostars. Plasmonics 5, 125–133 (2010). https://doi.org/10.1007/s11468-010-9125-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-010-9125-z

Keywords

Navigation