Skip to main content
Log in

Design of Plasmonic Nanoparticles for Efficient Subwavelength Light Trapping in Thin-Film Solar Cells

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This paper explores geometry-sensitive scattering from plasmonic nanoparticles deposited on top of a thin-film amorphous silicon solar cell to enhance light trapping in the photo-active layer. Considering the nanoparticles as ideal spheroids, the broadband optical absorption by the silicon layer is analyzed and optimized with respect to the nanoparticle aspect ratio in both the cases of resonant (silver) and nonresonant (aluminum) plasmonic nanostructures. It is demonstrated how the coupling of sunlight with the semiconductor can be improved through tuning the nanoparticle shape in both the dipolar and multi-polar scattering regimes, as well as discussed how the native oxide shell formed on the nanospheroid surface after the prolonged action of air and moisture affects the light trapping in the active layer and changes the photocurrent generation by the solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  2. Stuart HR, Hall DG (1998) Island size effects in nanoparticle-enhanced photodetectors. Appl Phys Lett 73:3815

    Article  CAS  Google Scholar 

  3. Derkacs D, Lim SH, Matheu P, Mar W, Yu ET (2006) Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl Phys Lett 89:093103

    Article  Google Scholar 

  4. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105

    Article  Google Scholar 

  5. Chao C-C, Wang C-M, Chang J-Y (2010) Spatial distribution of absorption in plasmonic thin film solar cells. Opt Express 18:11763–11771

    Article  CAS  Google Scholar 

  6. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York

    Book  Google Scholar 

  7. Landau LD, Lifshitz EM, Pitaevskii LP (1984) Electrodynamics of continuous media. Pergamon, Oxford

    Google Scholar 

  8. Mulvaney P, Perez-Juste J, Giersig M, Liz-Marzan LM, Pecharroman C (2006) Drastic surface plasmon mode shifts in gold nanorods due to electron charging. Plasmonics 1:61–66

    Article  CAS  Google Scholar 

  9. Grand J, Adam P-M, Grimault A-S, Vial A, Lamy de la Chapelle M, Bijeon J-L, Kostcheev S, Royer P (2006) Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory. Plasmonics 1:135–140

    Article  CAS  Google Scholar 

  10. Amendola V, Bakr OM, Stellacci F (2010) A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure, and assembly. Plasmonics (2010) 5:85–97

    Article  CAS  Google Scholar 

  11. Akimov YuA, Ostrikov K, Li EP (2009) Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4:107–113

    Article  CAS  Google Scholar 

  12. Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113

    Article  Google Scholar 

  13. Akimov YuA, Koh WS, Ostrikov K (2009) Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt Express 17:10195–10205

    Article  CAS  Google Scholar 

  14. Yin Y, Li Z-Y, Zhong Z, Gates B, Xia Y, Venkateswaran S (2002) Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J Mater Chem 12:522–527

    Article  CAS  Google Scholar 

  15. Akimov YuA, Koh WS (2010) Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells. Nanotechnology 21:235201

    Article  Google Scholar 

  16. Nakayama K, Tanabe K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett 93:121904

    Article  Google Scholar 

  17. Akimov YuA, Koh WS, Sian SY, Ren S (2010) Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles? Appl Phys Lett 96:073111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy A. Akimov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akimov, Y.A., Koh, W.S. Design of Plasmonic Nanoparticles for Efficient Subwavelength Light Trapping in Thin-Film Solar Cells. Plasmonics 6, 155–161 (2011). https://doi.org/10.1007/s11468-010-9181-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-010-9181-4

Keywords

Navigation