Skip to main content
Log in

Optimal Dimensions of Gold Nanorod for Plasmonic Nanosensors

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Localized surface plasmon resonance (LSPR) for longitudinal mode of gold nanorod is simulated by using Gans theory. The parameters like surface scattering, radiation damping, and dynamic depolarization of radiation across the surface of nanorod affecting response of free electrons towards optical excitation are considered. Simulation results show that refractive index sensitivity linearly rises with size and aspect ratio, whereas this leads to the broadening of resonant line width also. Therefore, to optimize the size of nanorod, figure of merit (FOM) is calculated and observed that optimized width is 15 nm for an aspect ratio of 2, whereas it is 12 nm for aspect ratios 3 and 4. Further, optimization by using newly modified figure of merit (MFOM) shows that optimized width is 39 nm for aspect ratio of 2 and 24 nm for 3 and 4 aspect ratios. It is also found that at aspect ratio 2, both FOM and MFOM are higher than the aspect ratios 3 and 4. The quality factor calculation for LSPR response of nanorod explains its dependence with aspect ratio and optimized dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chan GC, Zhao J, Schatz GC, Van-Duyne RP (2008) Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J Phys Chem C 112:13958–13963

    Article  CAS  Google Scholar 

  2. Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape and size dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233–5237

    Article  CAS  Google Scholar 

  3. Lee K, El-sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225

    Article  CAS  Google Scholar 

  4. Cao M, Wang M, Gu N (2009) Optimized surface plasmon resonance sensitivity of gold nanoboxes for sensing applications. J Phys Chem C 113:1217–1221

    Article  CAS  Google Scholar 

  5. Becker J, Trugler A, Jakab A, Hohenester U, Sonnichsen C (2010) The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics. doi:10.1007/s11468-010-9130-2

    Google Scholar 

  6. Hu M, Novo C, Funston A, Wang H, Staleva H, Zou S, Mulvancy P, Xia Y, Hartland GV (2008) Dark-field microscopy studies of single metal nanoparticles: understanding the factor that influence the linewidth of localized surface plasmon resonance. J Mater Chem 18:1949–1960

    Article  CAS  Google Scholar 

  7. Novo C, Gomez D, Perez-Juste J, Zhang Z, Petrova H, Resmann M, Mulvancy P, Hartland GV (2006) Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. Phys Chem Chem Phys 8:3540–3546

    Article  CAS  Google Scholar 

  8. Sherry LJ, Jin R, Mirkin CA, Schatz GC, Van-Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6:2060–2065

    Article  CAS  Google Scholar 

  9. Kou X, Zhang S, Tsung C, Yeung MH, Shi Q, Stucky GD, Wang J, Yan C (2006) Growth of gold nanorods and biopyramids using CTEAB surfactant. J Phys Chem B 110:16377–16383

    Article  CAS  Google Scholar 

  10. Zande BMI, Bohmer MR, Fokkink LGJ, Schonenberger C (2000) Colloidal dispersion of gold rods: synthesis and optical properties. Langmuir 16:451–458

    Article  Google Scholar 

  11. Apell P, Penn DR (1983) Optical properties of small metal spheres: surface effects. Phys Rev Letts 50:1316–1319

    Article  CAS  Google Scholar 

  12. Krebig U (1974) Electronic properties of small particles: the optical constant and their temperature dependence. J Phys F 4:999–1014

    Article  Google Scholar 

  13. Kelly KL, Cduardo E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  14. Wakaun A, Gordon JP, Liao PF (1982) Radiation damping in surface-enhanced Raman scattering. Phys Rev Letts 48:957–960

    Article  Google Scholar 

  15. Weber WH, Ford GW (2004) Propagation of optical excitations in metal nanoparticle chains. Phys Rev B 70:12529

    Google Scholar 

  16. Simsek E (2009) On the surface plasmon resonance modes of metal nanoparticle chains and arrays. Plasmonics. doi:10.1007/s11468-009-9096-0

    Google Scholar 

  17. Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073–3077

    Article  CAS  Google Scholar 

  18. Kooij ES, Poelsema B (2006) Shape and size effects in the optical properties of metallic nanorods. Phys Chem Chem Phys 8:3349–3357

    Article  Google Scholar 

  19. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806–3819

    Article  CAS  Google Scholar 

  20. Granqvist G, Hunderi O (1977) Optical properties of ultrafine gold particles. Phys Rev B 16:3513–3534

    Article  CAS  Google Scholar 

  21. Alvarez MM, Khoury JT, Schaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B 101:3706–3712

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Author Jagmeet Singh Sekhon would like to thank SLIET authorities for the financial support in the form of institute fellowship towards his Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagmeet Singh Sekhon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekhon, J.S., Verma, S.S. Optimal Dimensions of Gold Nanorod for Plasmonic Nanosensors. Plasmonics 6, 163–169 (2011). https://doi.org/10.1007/s11468-010-9182-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-010-9182-3

Keywords

Navigation