Skip to main content
Log in

Plasmonics Effects of Nanometal Embedded in a Dielectric Substrate

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We numerically report on first realization of near-field interaction and localized surface Plasmon resonance of a pair of silver-shell nanospheres with different dielectric holes embedded in a dielectric substrate using finite element method. An electromagnetic mode different from the solid case of the same volume is excited inside and outside the shell surface, resulting in an intensity enhancement in a gap of particle pair surrounding the particle–substrate interface. We find that the embedded depth of the nanoparticles pair in a substrate will influence the position of the localized fields which is confined in the gap. Besides, the near-field intensity becomes less intense and the spectrum of peak resonances red-shifted as the index difference of interface and embedded depth decreases. The proposed models have been prepared to cover the ultraviolet-visible, visible, and near-infrared (NIR) regions with application to sensors and spectroscopy purposes by varying the embedded depth and pertinent to the functionality of sensors, spectroscopy, and other optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Foteinopoulou S, Vigneron JP, Vandenbem C (2007) Optical near-field excitations on Plasmonic nanoparticle-based structures. Opt Express 15:4253–4267

    Article  CAS  Google Scholar 

  2. Muskens OL, Giannini V, Sánchez-Gil JA, Gómez Rivas J (2007) Optical scattering resonances of single and coupled dimer Plasmonic nanoantennas. Opt Express 15:17736–17746

    Article  CAS  Google Scholar 

  3. Boyer D, Tamarat P, Maali A, Lounis B, Orrit M (2002) Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297:1160–1163

    Article  CAS  Google Scholar 

  4. McFarland AD, Van Duyne RP (2003) Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity. Nano Lett 3:1057–1062

    Article  CAS  Google Scholar 

  5. Sherry LJ, Chang S-H, Schatz GC, Van Duyne RP (2005) Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes. Nano Lett 5:2034–2038

    Article  CAS  Google Scholar 

  6. Mahmoud MA, Snyder B, El-Sayed MA (2010) Surface Plasmon fields and coupling in the hollow gold nanoparticles and surface-enhancement Raman spectroscopy. Theory and experiment. J Phys Chem C 114:7436–7443

    Article  CAS  Google Scholar 

  7. Nehl CL, Liao H, Hafner JH (2006) Optical Properties of Star-Shaped Gold Nanoparticles. Nano Lett 6:683–688

    Article  CAS  Google Scholar 

  8. Chau Y-F (2009) Surface Plasmon effects excited by the dielectric hole in a silver-shell nanospherical pair. Plasmonics 4:253–259

    Article  CAS  Google Scholar 

  9. Britt Lassiter J, Aizpurua J, Hernandez LI, Brandl DW, Romero I, Lal S, Hafner JH, Nordlander P, Halas NJ (2008) Close Encounters between Two Nanoshells. Nano Lett 8:1212–1218

    Article  Google Scholar 

  10. Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2009) Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates. Nano Lett 5:1569–1574

    Article  Google Scholar 

  11. Noguez C (2007) Surface Plasmons on Metal Nanoparticles: The Influence of Shape and PhysicalEnvironment. J Phys Chem C 111:3806–3819

    Article  CAS  Google Scholar 

  12. Kang JH, Choe Jong-Ho, Kim DS, Park Q-Han (2009) Substrate effect on aperture resonances in a thin metal film. Opt Express 17:15652–15658

    Article  CAS  Google Scholar 

  13. Lassiter JB, Aizpurua J, Hernandez LI, Brandl DW, Romero I, Lal S, Hafner JH, Nordlander P, Halas NJ (2008) Nanoshells dimers and overlapped dimmers. Nano Lett 8:1212–1218

    Article  CAS  Google Scholar 

  14. COMSOL (2010) Multiphysics 4.1 TM. http://www.comsol.com.

  15. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  16. Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW Jr, Ward CA (1983) Optical properties of the metals Al, Co, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Optics 22:4493–4499

    Article  Google Scholar 

  17. Ordal MA, Bell RJ, Alexander RW Jr, Long LL, Querry MR (1985) Optical properties of the metals Al, Co, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Optics 24:1099–1120

    Google Scholar 

  18. Roma’n-Vela’zquez CE, Noguez C, Barrera RG (2000) Substrate effects on the optical properties of spheroidal nanoparticles. Phys Rev B 61:10427–10436

    Article  Google Scholar 

  19. Andrew A, Barnes WL (2004) Energy transfer across a metal film mediated by surface Plasmon polaritons. Science 306:1002–1005

    Article  CAS  Google Scholar 

  20. Okamoto K, NiKi I, Scherer A, Narukawa Y, Mukai T (2004) Surface-Plasmon-enhanced light emitters based on InGaN quantum wells. Nature Mater 3:601–605

    Article  CAS  Google Scholar 

  21. Politano A, Chiarello G (2009) Tuning the lifetime of the surface Plasmon upon sputtering. Phys Status Solidi-Rapid Res Lett 3:136–1389

    Article  CAS  Google Scholar 

  22. Chau YF, Yeh HH, Tsai DP (2010) Surface Plasmon resonances effects on different patterns of solid-silver and silver-shell nanocylindrical pairs. Journal of Electromagnetic Waves and Applications 24:1005–1014

    Article  Google Scholar 

  23. Wang H, Brandl DW, Nordlander P, Halas NJ (2007) Tunable Plasmonic nanostructures: From fundamental nanoscale optics to surface-enhanced spectroscopies. Acc Chem Res 40:53–62

    Article  Google Scholar 

  24. Schatz GC, Young MA, Van Duyne RP (2006) Surface Enhanced Raman Scattering Physics and Applications. In Topics in Applied Physics; Kneipp, K., Moskovits M., Kneipp, H., Eds., Springer. New York, Vol 103:19–46

    CAS  Google Scholar 

  25. Li K, Stockman MI, Bergman DJ (2005) Optical Frequency Mixing at Coupled Gold Nanoparticles. Phys Rev Lett 72:153401

    Google Scholar 

  26. Aizpurua J, Taubner Thomas, Javier García de Abajo F, Brehm Markus, Hillenbrand Rainer (2008) Substrate-enhanced infrared near-field spectroscopy. Opt Express 16:1529–1545

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Science Council of the Republic of China (Taiwan) under Contract No. NSC 99-2112-M-231-001-MY3 and NSC-99-2120-M-002-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Fong Chau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chau, YF., Jiang, ZH. Plasmonics Effects of Nanometal Embedded in a Dielectric Substrate. Plasmonics 6, 581–589 (2011). https://doi.org/10.1007/s11468-011-9238-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9238-z

Keywords

Navigation