Skip to main content
Log in

Nanoscale Surface Plasmon All-Optical Diode Based on Plasmonic Slot Waveguides

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A nanoscale surface plasmon all-optical diode is proposed based on a plasmonic slot waveguide having an asymmetric plasmonic grating in the center. The asymmetric configuration of the plasmonic grating and the unique dispersion relations of the plasmonic slot waveguide ensure the nonreciprocal transmission properties. High transmittance contrast ratio of 1,150 is achieved theoretically. The performance of the surface plasmon all-optical diode does not have any high power requirement. This may open a new way for the study of integrated photonic devices based on surface plasmons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scalora M, Dowling JP, Bowden CM, Bloemer MJ (1994) The photonic band edge optical diode. J Appl Phys 76:2023–2026

    Article  CAS  Google Scholar 

  2. Tocci MD, Bloemer MJ, Scalora M, Dowling JP, Bowden CM (1995) Thin-film nonlinear optical diode. Appl Phys Lett 66:2324–2326

    Article  CAS  Google Scholar 

  3. Lin XS, Yan JH, Wu LJ, Lan S (2008) High transmission contrast for single resonator based all-optical diodes with pump-assisting. Opt Express 16:20949–20954

    Article  CAS  Google Scholar 

  4. Zhou H, Zhou KF, Hu W, Guo Q, Lan S, Lin XS, Gopal AV (2006) All-optical diodes based on photonic crystal molecules consisting of nonlinear defect pairs. J Appl Phys 99:123111

    Article  Google Scholar 

  5. Mingaleev SF, Kivshar YS (2002) Nonlinear transmission and light localization in photonic-crystal waveguides. J Opt Soc Am B 19:2241–2249

    Article  CAS  Google Scholar 

  6. Gevorgyan AH, Harutyunyan MZ (2007) Chiral photonic crystals with an anisotropic defect layer. Phys Rev E 76:031701

    Article  CAS  Google Scholar 

  7. Feise MW, Shadrivov IV, Kivshar YS (2005) Bistable diode action in left-handed periodic structures. Phys Rev E 71:037602

    Article  Google Scholar 

  8. Khanikaev AB, Steel MJ (2009) Low-symmetry magnetic photonic crystals for nonreciprocal and unidirectional devices. Opt Express 17:5265–5272

    Article  CAS  Google Scholar 

  9. Gallo K, Assanto G, Parameswaran KR, Fejer MM (2001) All-optical diode in a periodically poled lithium niobate waveguide. Appl Phys Lett 79:314–316

    Article  CAS  Google Scholar 

  10. Konorov SO, Biryukov DAS, Bugar I, Beloglazov MJ, Skibina NB, Chorvatjr D, Chorvat D, Scalora M, Zheltikov AM (2004) Experimental demonstration of a photonic-crystal-fiber optical diode. Appl Phys B: Lasers Opt 34:1417–1420

    Google Scholar 

  11. Biryukov DAS, Fedotov AB, Konorov SO, Mitrokhin VP, Scalora M, Zheltikov AM (2004) Photonic crystal fiber optical diode. Laser Phys 14:764–766

    Google Scholar 

  12. Philip R, Anija M, Yelleswarapu CS, Rao DVGLN (2007) Passive all-optical diode using asymmetric nonlinear absorption. Appl Phys Lett 91:141118

    Article  Google Scholar 

  13. Lin XS, Wu WQ, Zhou H, Zhou KF (2006) Enhancement of unidirectional transmission through the coupling of nonlinear photonic crystal defects. Opt Express 14:2429–2439

    Article  Google Scholar 

  14. Zhao NS, Zhou H, Guo Q, Hu W, Yang XB, Lan S (2006) Design of highly efficient optical diodes based on the dynamics of nonlinear photonic crystal molecules. J Opt Soc Am B 23:2434–2240

    Article  CAS  Google Scholar 

  15. Hwang J, Song MH, Park B, Nishimura S, Toyooka T, Wu JW, Takanishi Y, Ishikawa K, Takezoe H (2005) Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions. Nature Mater 4:383–387

    Article  CAS  Google Scholar 

  16. Song MH, Park B, Takanishi Y, Ishikawa K, Nishimura S, Toyooka T, Takezoe H (2006) Simple electro-tunable optical diode using photonic and anisotropic liquid crystal films. Thin Solid Films 509:49–52

    Article  CAS  Google Scholar 

  17. Cakmakyapan S, Caglayan H, Serebryannikov AE, Ozbay E (2011) Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit. Appl Phys Lett 98:051103

    Article  Google Scholar 

  18. Hu XY, Xin C, Li ZQ, Gong QH (2010) Ultrahigh-contrast all-optical diodes based on tunable surface plasmon polaritons. New J Phys 12:1023029

    Google Scholar 

  19. Dionne JA, Sweatlock LA, Atwater HA, Polman A (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 73:035407

    Article  Google Scholar 

  20. Barnes WL, Preist TW, Kitson SC, Sambles JR (1996) Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Phys Rev B 54:6227–6244

    Article  CAS  Google Scholar 

  21. Balci S, Kocabas A, Kocabas C, Aydinli A (2010) Slowing surface plasmon polaritons on plasmonic coupled cavities by tuning grating grooves. Appl Phys Lett 97:131103

    Article  Google Scholar 

  22. Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Report 408:131–314

    Article  CAS  Google Scholar 

  23. Ding CY, Hu XY, Jiang P, Gong QH (2008) Tunable surface plasmon polariton microcavity. Phys Lett A 372:4536–4538

    Article  CAS  Google Scholar 

  24. Johnson PB, Christy RW (1972) Optical constant of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  25. Kim MK, Lee SH, Choi M, Ahn BH, Park N, Lee YH, Min B (2010) Low-loss surface-plasmonic nanobeam cavities. Opt Express 18:11089–11096

    Article  CAS  Google Scholar 

  26. Kurokwaw Y, Miyazaki HT (2007) Metal-insulator-metal plasmon nanocavities: analysis of optical properties. Phys Rev B 75:035411

    Article  Google Scholar 

  27. McGurn AB, Christensen KT, Mueller FM, Maradudin AA (1993) Anderson localization in one-dimensional randomly disordered optical system that are periodic on average. Phys Rev B 47:13120–13125

    Article  Google Scholar 

  28. Frigerio JM, Rivory J, Sheng P (1993) Photonic bandtail in 1D randomly-perturbed periodic system. Opt Commun 98:231–235

    Article  Google Scholar 

  29. Martinez A, Blasco J, Sanchis P, Galan JV, Ruperez JG, Jordana E, Gautier P, Lebour Y, Hernandez S, Guider R, Daldosso N, Garrido B, Fedeli JM, Pavesi L, Marti J (2010) Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Lett 10:1506–1511

    Article  CAS  Google Scholar 

  30. Chang YT, Wu YT, Lee JH, Chen HH, Hsueh CY, Huang HF, Jiang YW, Chang PE, Lee SC (2009) Emission properties of Ag/dielectric/Ag plasmonic thermal emitter with different lattice type, hole shape, and dielectric material. Appl Phys Lett 95:213102

    Article  Google Scholar 

  31. Briggs RM, Grandidier J, Burgos SP, Feigenbaum E, Atwater HA (2010) Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides. Nano Lett 10:4851–4857

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grants 61077027, 10874010, 10821062, 90921008, and 10434020 and the National Basic Research Program of China under grant 2007CB307001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyong Hu or Qihuang Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Zhang, Y., Xu, X. et al. Nanoscale Surface Plasmon All-Optical Diode Based on Plasmonic Slot Waveguides. Plasmonics 6, 619–624 (2011). https://doi.org/10.1007/s11468-011-9243-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9243-2

Keywords

Navigation