Skip to main content
Log in

Optimization of Dielectric-Coated Silver Nanoparticle Films for Plasmonic-Enhanced Light Trapping in Thin Film Silicon Solar Cells

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface plasmonic-enhanced light trapping from metal nanoparticles is a promising way of increasing the light absorption in the active silicon layer and, therefore, the photocurrent of the silicon solar cells. In this paper, we applied silver nanoparticles on the rear side of polycrystalline silicon thin film solar cell and systematically studied the dielectric environment effect on the absorption and short-circuit current density (Jsc) of the device. Three different dielectric layers, magnesium fluoride (MgF2, n = 1.4), tantalum pentoxide (Ta2O5, n = 2.2), and titanium dioxide (TiO2, n = 2.6), were investigated. Experimentally, we found that higher refractive index dielectric coatings results in a redshift of the main plasmonic extinction peak and higher modes were excited within the spectral region that is of interest in our thin film solar cell application. The optical characterization shows that nanoparticles coated with highest refractive index dielectric TiO2 provides highest absorption enhancement 75.6 %; however, from the external quantum efficiency characterization, highest short-circuit current density Jsc enhancement of 45.8 % was achieved by coating the nanoparticles with lower refractive index MgF2. We also further optimize the thickness of MgF2 and a final 50.2 % Jsc enhancement was achieved with a 210-nm MgF2 coating and a back reflector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brendel R (2003) Thin film crystalline silicon solar cells. Wiley, Morlenbach

    Book  Google Scholar 

  2. Branz HM, Teplin CW, Romero MJ et al (2011) Hot-wire chemical vapor deposition of epitaxial film crystal silicon for photovoltaics. Thin Solid Films 519:4545–4550

    Article  CAS  Google Scholar 

  3. Green MA, Blakers A, Shi J et al (1984) High efficiency silicon solar cells. IEEE Trans Electron Dev 31:679–683

    Article  Google Scholar 

  4. Stuart HR, Hall DG (1997) Thermodynamic limit to light trapping in thin planar structures. J Opt Soc Am A 14:3001–3008

    Article  CAS  Google Scholar 

  5. Ouyang Z, Kunz O, Wolf M, Widenborg P, Jin G, Varlamov S (2009). Challenges in evaporated solid-state-crystallised poly-Si thin-film solar cells on textured glass, 18th Photovoltaic Solar Energy Conference Asia, Kolkata

  6. Werner M, Schubert U, Hagendorf C, Schneider J, Keevers M, Egan R (2009) Thin film morphology, growth and defect structure of e-beam deposited silicon on glass, 24th European Photovoltaic Solar Energy Conference, Hamburg, pp 2482–2485

  7. Vivian EF, Jeremy NM, Harry A (2010) Design considerations for plasmonic photovoltaics. Adv Mater 22:4794–4808

    Article  Google Scholar 

  8. Atwater HA, Albert P (2010) Plasmonic for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  9. Akimov YA, Ostrikov K, Li EP (2009) Surface plasmon enhancement of optical absorption in thin film silicon solar cells. Plasmonics 4:107–113

    Article  CAS  Google Scholar 

  10. Nakayama K, Tanabe K, Atwater H (2008) Plasmonic nanoparticles enhanced light absorption in GaAs solar cells. Appl Phys Lett 93:121904

    Article  Google Scholar 

  11. Derkacs D, Lim SH, Matheu P, Mar W, Yu ET (2006) Improved performance of amorphous silicon solar cells visa scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl Phys Lett 89:093103

    Article  Google Scholar 

  12. Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption visa surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106

    Article  Google Scholar 

  13. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  14. Stuart HR, Hall DG (1998) Island size effects in nanoparticles-enhanced photodetectors. Appl Phys Lett 73:3815

    Article  CAS  Google Scholar 

  15. Kelly KL et al (2003) The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  16. Cathople KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113

    Article  Google Scholar 

  17. Beck FJ, Mokkapati S, et al. (2009) Light trapping for solar cells using localised surface plasmons in self-assembled Ag nanoparticles. 24th European Photovoltaic Solar Energy Conference 232–235

  18. Varlamov S, Ouyang Z, Zhao X, Jung DS (2010) Surface plasmon enhanced light-trapping in polycrystalline silicon thin film solar. Photon Global Conf. doi:10.1109/PGC.2010.5706090

  19. Mcmahon MD, Lopez R, MeyerIII HM, Feldman LC, Haglund RF (2005) Rapid tarnishing of silver nanoparticles in ambient laboratory air. Appl Phys B 80:915–921

    Article  CAS  Google Scholar 

  20. Cao W, Elsayed-Ali HE (2009) Stability of Ag nanoparticles fabricated by electron beam lithography. Mater Lett 63:2263–2266

    Article  CAS  Google Scholar 

  21. Elechiguerra JL, Larios-Lopez L, Liu C, Garcia-Gutierrez D (2005) Corrosion at the nanoscale: the case of silver nanowires and nanoparticles. Chem Mater 17:6042–6052

    Article  CAS  Google Scholar 

  22. Jensen RT, Malinsky MD, Haynes CL (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 104:10549–10556

    Article  CAS  Google Scholar 

  23. Kim DK, Kerman K, Saito M, Sathuluri RR et al (2007) Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry. Anal Chem 79:1855–1864

    Article  CAS  Google Scholar 

  24. Liu GL, Yin YD, Kunchakarra S, Mukherjee B et al (2006) A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting. Nat Nanotechnol 1:47–52

    Article  CAS  Google Scholar 

  25. Beck FJ, Polman A, Cathople KR (2009) Tunable light trapping for solar cells using localized surface plasmons. J Appl Phys 105:114310

    Article  Google Scholar 

  26. Beck FJ, Mokkapati S, Polman A, Cathpole KR (2010) Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells. Appl Phys Lett 96:033113

    Article  Google Scholar 

  27. Lim SH, Mar W, Matheu P, Derkacs D, Yu ET (2007) Hotcurrent spectroscopy of optical absorption enhancement in silicon photodiodes vis scattering from surface plasmon polaritons in gold nanoparticles. J Appl Phys 101:104309

    Article  Google Scholar 

  28. Yu ET, Derkacs D, Lim SH, Matheu P, Schaadt DM (2008) Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices. Proc SPIE 7033:70331v1–70331v9

    Google Scholar 

Download references

Acknowledgments

J.Rao acknowledges the receipt of a Vice-Chancellor Research Fellowship at the University of New South Wales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, J., Varlamov, S., Park, J. et al. Optimization of Dielectric-Coated Silver Nanoparticle Films for Plasmonic-Enhanced Light Trapping in Thin Film Silicon Solar Cells. Plasmonics 8, 785–791 (2013). https://doi.org/10.1007/s11468-012-9473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9473-y

Keywords

Navigation