Skip to main content
Log in

Surface Plasmon Induced Polarization Splitting Based on Dual-Core Photonic Crystal Fiber with Metal Wire

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The polarization characteristics of a dual-core photonic crystal fiber (PCF) with a metal wire filled into the cladding air hole between the two cores have been investigated. Numerical investigation shows that the inclusion of the metal wire greatly changes the coupling characteristics of the modes in the two cores. In fact, the coupling lengths of the two polarizations show increased difference, which leads to the possibility of designing a dual-core PCF with a coupling length ratio of 1:2 for the two polarization states. The proposed polarization splitter shows extinction ratios as low as −20 dB with bandwidths as great as 146 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang L, Yang CX (2003) Polarization splitter based on the photonic crystal fibers. Opt Express 11:1015–1020

    Article  Google Scholar 

  2. Zhang L, Yang CX (2004) A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores. Photon Technol Lett IEEE 57:1670–1672

    Article  Google Scholar 

  3. Zhang L, Yang CX, Yu C, Luo T, Willner AE (2005) PCF-based polarization splitters with simplified structures. J Lightwave Technol 23:3558–3565

    Article  Google Scholar 

  4. Chen M-Y, Sun B, Zhang YK, Fu XX (2010) Design of broadband polarization splitter based on partial coupling in square-lattice photonic-crystal fiber. Appl Opt 49:3042–3048

    Article  Google Scholar 

  5. Saitoh K, Sato Y, Koshiba M (2003) Coupling characteristics of dual-core photonic crystal fiber couplers. Opt Express 11:3188–3195

    Article  Google Scholar 

  6. Rosa L, Poli F, Foroni M, Cucinotta A, Selleri S (2006) Polarization splitter based on a square-lattice photonic-crystal fiber. Opt Lett 31:441–443

    Article  Google Scholar 

  7. Knight J, Birks T, Russell PSJ, Atkin D (1996) All-silica single-mode optical fiber with photonic crystal cladding. Opt Lett 21:1547–1549

    Article  CAS  Google Scholar 

  8. Sun Y-S, Chau Y-F, Yeh H-H, Shen L-F, Yang TJ, Tsai DP (2007) High birefringence photonic crystal fiber with a complex unit cell of asymmetric elliptical air hole cladding. Appl Opt 46:5276–5281

    Article  CAS  Google Scholar 

  9. Li J, Mao Y, Tam CLHY, Wai PKA (2011) Polarization splitting of photonic crystal fiber with hybrid guidance mechanisms. Photon Technol Lett IEEE 23:1358–1360

    Article  Google Scholar 

  10. Noordegraaf D, Scolari L, Lgsgaard J, Tanggaard Alkeskjold T, Tartarini G, Borelli E, Bassi P, Li J, Wu ST (2008) Avoided-crossing-based liquid-crystal photonic-bandgap notch filter. Opt Lett 33:986–988

    Article  CAS  Google Scholar 

  11. Tyagi H, Schmidt M, Prill Sempere L, Russell P (2008) Optical properties of photonic crystal fiber with integral micron-sized Ge wire. Opt Express 16:17227–17236

    Article  CAS  Google Scholar 

  12. Schmidt MA, Sempere LNP, Tyagi HK, Poulton CG, Russell PSJ (2008) Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires. Phys Rev B 77:033417

    Article  Google Scholar 

  13. Nagasaki A, Saitoh K, Koshiba M (2011) Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes. Opt Express 19:3799–3808

    Article  CAS  Google Scholar 

  14. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91

    Article  CAS  Google Scholar 

  15. Lee H, Schmidt M, Tyagi H, Sempere LP, Russell PSJ (2008) Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Appl Phys Lett 93:111102

    Article  Google Scholar 

  16. Lee H, Schmidt M, Russell R, Joly N, Tyagi H, Uebel P, Russell PSJ (2011) Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. Opt Express 19:12180–12189

    Article  CAS  Google Scholar 

  17. Zou CL, Sun FW, Dong CH, Ren XF, Cui JM, Chen XD, Han ZF, Guo GC (2011) Broadband integrated polarization beam splitter with surface plasmon. Opt Lett 36:3630–3632

    Article  Google Scholar 

  18. Chen W, Thoreson MD, Ishii S, Kildishev AV, Shalaev VM (2010) Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer. Opt Express 18:5124–5134

    Article  CAS  Google Scholar 

  19. White T, Kuhlmey B, McPhedran R, Maystre D, Renversez G, De Sterke CM, Botten L (2002) Multipole method for microstructured optical fibers. I. Formulation. J Opt Soc Am B 19:2322–2330

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (NNSFC) (grant no. 10904051), the Qing Lan Project of Jiangsu Province, the Innovation Program of Graduated Student of Jiangsu Province (grant no. CXZZ11_0547), and the Open Fund of Key Subject of Zhejiang Province (Applied Nonlinear Science and Technology, grant no. xkz12003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Yang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, B., Chen, MY., Zhou, J. et al. Surface Plasmon Induced Polarization Splitting Based on Dual-Core Photonic Crystal Fiber with Metal Wire. Plasmonics 8, 1253–1258 (2013). https://doi.org/10.1007/s11468-013-9542-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9542-x

Keywords

Navigation