Skip to main content
Log in

Improving the Sensitivity of Fiber Surface Plasmon Resonance Sensor by Filling Liquid in a Hollow Core Photonic Crystal Fiber

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Inspired by the classic theory, we suggest that the performance of a D-shaped fiber optical surface plasmon resonance (SPR) sensor can be improved by manipulating the fiber core mode. To demonstrate this, we propose a novel fiber SPR sensor based on a hollow core photonic crystal fiber with liquid mixture filled in the core. The fiber sensor design involves a side-polished fiber with gold film deposited on the polished plane and liquid filling. Numerical simulation results suggest that by tuning the refractive index of the liquid mixture, the predicted sensitivity will be over 6,430 nm/refractive index unit for an aqueous environment, which is competitive for fiber chemical sensing. This optimization method may lead to an ultrahigh sensitivityfiber optical biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yanase Y, Araki A, Suzuki H, Tsutsui T, Kimura T, Okamoto K, Nakatani T, Hiragun T, Hide M (2010) Biosens Bioelectron 25(5):1244. doi:10.1016/j.bios.2009.09.042

    Article  CAS  Google Scholar 

  2. Srivastava T, Das R, Jha R (2012) Plasmonics 1–7. doi:10.1007/s11468-012-9421-x

  3. Slavik R, Homola J, Brynda E (2002) Biosens Bioelectron 17(6–7):591. doi:10.1016/S0956-5663(02)00013-1

    Article  CAS  Google Scholar 

  4. Delport F, Pollet J, Janssen K, Verbruggen B, Knez K, Spasic D, Lammertyn J (2012) Nanotechnology 23(6): 065503. doi:10. 1088/0957-4484/23/6/065503

    Article  Google Scholar 

  5. Verma R, Gupta BD (2013) Sensors Actuators B Chem 177(0):279. doi:10.1016/j.snb.2012.10.135

    Article  CAS  Google Scholar 

  6. Kanso M, Cuenot S, Louarn G (2008) Plasmonics 3:49. doi:10.1007/s11468-008-9055-1

    Article  Google Scholar 

  7. Hassani A, Skorobogatiy M (2007) Opt J Soc Am B 24(6):1423. doi:10.1364/JOSAB.24.001423

    Article  CAS  Google Scholar 

  8. Hassani A, Skorobogatiy M (2007) Opt J Soc Am B 24(6):1423. doi:10.1364/OE.14.011616

    Article  CAS  Google Scholar 

  9. Shuai B, Xia L, Zhang Y, Liu D (2012) Opt Express 20(6):5974. doi:10.1364/OE.20.005974

    Article  CAS  Google Scholar 

  10. Monzon-Hernandez D, Villatoro J, Talavera D, Luna-Moreno D (2004) Appl Opt 43(6):1216. doi:10.1364/AO.43.001216

    Article  Google Scholar 

  11. Tong L, Hu L, Zhang J, Qiu J, Yang Q, Lou J, Shen Y, He J, Ye Z (2006) Opt Express 14(1):82. doi:10.1364/OPEX.14.000082

    Article  CAS  Google Scholar 

  12. Chen Z, Tang J, Fan R, Zhong Y, Zhang J, Li S (2011) In: 21st international conference on optical fiber sensors, pp 77538K. doi:10.1117/12.885183

  13. Lo YL, Chuang CH, Lin ZW (2011) Opt Lett 36(13):2489. doi:10.1364/OL.36.002489

    Article  Google Scholar 

  14. Tian M, Lu P, Chen L, Lv C, Liu D (2012) Opt Commun 285(6):1550. doi:10.1016/j.optcom.2011.11.104

    Article  CAS  Google Scholar 

  15. Xuejin L, Yongqin Y, Xueming H, Kuiyan S, Li Z (2009) Chin J Lasers 36(5):1140

    Article  Google Scholar 

  16. Yu Y, Li X, Hong X, Deng Y, Song K, Geng Y, Wei H, Tong W (2010) Opt Express 18(15):15383. doi:10.1364/OE.18.015383

    Article  CAS  Google Scholar 

  17. Pomplun J, Zschiedrich L, Klose R, Schmidt F, Burger S (2007) Phys Status Solidi (A) 204(11):3822. doi:10.1002/pssa.200776414

    Article  CAS  Google Scholar 

  18. Raether H (1988) Surface plasmons on smooth and rough surfaces and on grattings. Springer, Berlin

    Google Scholar 

  19. Pitarke JM, Silkin VM, Chulkov EV, Echenique PM (2007) Rep Prog Phys 70:1. doi:10.1088/0034-4885/70/1/R01

    Article  CAS  Google Scholar 

  20. http://refractiveindex.info

  21. Samoc A (2003) J Appl Phys 94(9):6167. doi:10.1063/1.1615294

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundations of China under grants (61275125), the Research Foundation for the Doctoral Program of Higher Education of Ministry of Education (20124408110003), the Province–Ministry Industry–University–Institute Cooperation Project of Guangdong Province under grant (2010B090400328), the Shenzhen Science and Technology Project, the Shenzhen Nanshan District Science and Technology Project, and the High-level Talents Project of Guangdong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, Z., Li, X., Chen, Y. et al. Improving the Sensitivity of Fiber Surface Plasmon Resonance Sensor by Filling Liquid in a Hollow Core Photonic Crystal Fiber. Plasmonics 9, 167–173 (2014). https://doi.org/10.1007/s11468-013-9609-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9609-8

Keywords

Navigation