Skip to main content
Log in

Broadening of Plasmonic Resonance Due to Electron Collisions with Nanoparticle Boundary: а Quantum Mechanical Consideration

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present a quantum mechanical approach to calculate broadening of plasmonic resonances in metallic nanostructures due to collisions of electrons with the surface of the structure. The approach is applicable if the characteristic size of the structure is much larger than the de Broglie electron wavelength in the metal. The approach can be used in studies of plasmonic properties of both single nanoparticles and arrays of nanoparticles. Energy conservation is insured by a self-consistent solution of Maxwell's equations and our model for the photon absorption at the metal boundaries. Consequences of the model are illustrated for the case of spheroid nanoparticles, and results are in good agreement with earlier theories. In particular, we show that the boundary-collision broadening of the plasmonic resonance in spheroid nanoparticles can depend strongly on the polarization of the impinging light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang F, Shen YR (2006) General properties of local plasmons in metal nanostructures. Phys Rev Lett 97:206806

    Article  Google Scholar 

  2. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  3. Ruppin R, Yatom H (1976) Size and shape effects on the broadening of the plasma resonance absorption in metals. Phys Stat Sol (b) 74:647–654

    Article  Google Scholar 

  4. Schatz GC, Kraus WA (1983) Plasmon resonance broadening in small metal particles. J Chem Phys 79:6130–6139

    Article  Google Scholar 

  5. Cini M (1983) Classical and quantum aspects of size effects. J Opt Soc Am 71:386–392

    Article  Google Scholar 

  6. Raza S, Stenger N, Kadkhodazadeh S, Fischer SV, Kostesha N, Jauho AP, Burrows A, Wubs M, Mortensen NA (2013) Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS. Nanophotonics 2:131–138

    Article  CAS  Google Scholar 

  7. Aersq GC, Inglesfieldt JE (1983) Photoyield enhancement from small metal particles. J Phys F Met Phys 13:1743–1756

    Article  Google Scholar 

  8. Tamm I, Schubin S (1931) Zur theorie des photoeffektes an metallen. Z Phys 68:97–113

    Article  CAS  Google Scholar 

  9. Brodsky AM, Gurevich YY (1973) Theory of electron emission from metals. Nauka, Moscow

    Google Scholar 

  10. Brodsky AM, YuYa G (1968) Theory of external photoeffect from the surface of a metal. Sov Phys JETP 27:114–121

    Google Scholar 

  11. Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science + Business Media LLC, USA

    Google Scholar 

  12. Knight MW, Sobhani H, Nordlander P, Halas NJ (2011) Photodetection with active optical antennas. Science 332:702–704

    Article  CAS  Google Scholar 

  13. Novitsky A, Uskov AV, Gritti C, Protsenko IE, Kardynał BE, Lavrinenko AV (2012) Photon absorption and photocurrent in solar cells below semiconductor bandgap due to electron photoemission from plasmonic nanoantennas. Prog Photovolt Res Appl. doi:10.1002/pip.2278

    Google Scholar 

  14. Goykhman I, Desiatov B, Khurgin J, Shappir J, Levy U (2012) Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Opt Express 20:28594–28602

    Article  Google Scholar 

  15. Landau LD, Lifshitz EM (1960) Electrodynamics of continuous media. Pergamon Press, Oxford

    Google Scholar 

  16. Protsenko IE, Uskov AV (2012) Photoemission from metal nanoparticles. Phys-Usp 55:508–518

    Article  CAS  Google Scholar 

  17. Mitchell K (1934) The theory of the surface photoelectric effect in metals. Proc R Soc Lond Ser A 146:442–464

    Article  CAS  Google Scholar 

  18. Zou S, Janel N, George Schatz C (2004) Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J Chem Phys 120:10871–10875

    Article  CAS  Google Scholar 

  19. Raza S, Toscano G, Jauho AP, Wubs M, Mortensen NA (2011) Unusual resonances in nanoplasmonic structures due to nonlocal response. Phys Rev B 84:121412(R)

    Article  Google Scholar 

  20. Ginzburg P, Zayats AV (2013) Localized surface plasmon resonances in spatially dispersive nano-objects: phenomenological treatise. ACS Nano. doi:10.1021/nn400842m

    Google Scholar 

  21. Yan W, Mortensen NA, Wubs M (2012) Hyperbolic metamaterials: nonlocal response regularizes broadband supersingularity. Phys Rev B 86:205429

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Science Foundation Ireland (06/IN.1/I90) and by Russian Foundation for Basic Research (14-02-00125). The Center for Nanostructured Graphene (CNG) is sponsored by the Danish National Research Foundation, Project DNRF58.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Uskov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uskov, A.V., Protsenko, I.E., Mortensen, N.A. et al. Broadening of Plasmonic Resonance Due to Electron Collisions with Nanoparticle Boundary: а Quantum Mechanical Consideration. Plasmonics 9, 185–192 (2014). https://doi.org/10.1007/s11468-013-9611-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9611-1

Keywords

Navigation