Skip to main content
Log in

Extraordinary Optical Transmission Property of X-Shaped Plasmonic Nanohole Arrays

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Optical transmission properties of periodic X-shaped plasmonic nanohole arrays in a silver film are investigated by performing the finite element method. Obvious peaks appear in the transmission spectra due to surface plasmon polaritons (SPPs) on the top surface of the silver film, to the Fabry–Ferot resonance effect of SPPs in the nanohole, and to the localized surface plasmon resonance of the nanohole. Besides the topologic shape parameters of the X-shaped nanohole, transmission properties strongly depend on incident polarization. The results of this study not only present a tunable plasmonic filter, but also aid in the understanding of the mechanisms of the extraordinary optical transmission phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  2. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  3. Dahlin A, Zach M, Rindzevicius T, Kall M, Sutherland DS, Hook F (2005) Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J Am Chem Soc 127:5043

    Article  CAS  Google Scholar 

  4. Du LP, Tang DY, Yuan GH, Wei SB, Yuan XC (2013) Emission pattern of surface-enhanced Raman scattering from single nanoparticle-film junction. Appl Phys Lett 102:081117

    Article  Google Scholar 

  5. Rindzevicius T, Alaverdyan Y, Dahlin A, Höök F, Sutherland DS, Käll M (2005) Plasmonic sensing characteristics of single nanometric holes. Nano Lett 5:2335–2339

    Article  CAS  Google Scholar 

  6. Gbur G, Schouten HF, Visser TD (2005) Achieving superresolution in near-field optical data readout systems using surface plasmons. Appl Phys Lett 87:191109

    Article  Google Scholar 

  7. Lee KL, Tai YH, Wei PK (2011) Structure effect on sensitivity of gold nanoslits studied by spectral integration method. Plasmonics 6:483–490

    Article  CAS  Google Scholar 

  8. Wang LN, Xu BZ, Bai WL, Zhang J (2012) Multiple surface plasmon resonances in compound structure with metallic nanoparticle and nanohole arrays. Plasmonics 7:659–663

    Article  CAS  Google Scholar 

  9. Wang YH, Wang YQ, Zhang Y, Liu ST (2009) Transmission through metallic array slits with perpendicular cuts. Opt Express 17:5014

    Article  CAS  Google Scholar 

  10. Yang S, Liu MK, Li JS, Chen X, Xu HX, Zhu QZ, Wang XH, Jin CJ (2011) Extraordinary transmission of three-dimensional crescent-like holes arrays. Plasmonics 7:221–227

    Google Scholar 

  11. Lee JW, Yang JK, Sohn IB, Kang C, Kee CS (2013) Folded slot resonator array with efficient terahertz transmission. Opt Commun 293:155–159

    Article  CAS  Google Scholar 

  12. Chi YM, Chen HL, Lai YS, Chang HM, Liao YC, Cheng CC, Chen SH, Tseng SC, Lin KT (2012) Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells. Energy Environ Sci 6:935–942

    Article  Google Scholar 

  13. Lu XC, Zhang WL (2009) Terahertz localized plasmonic properties of subwavelength ring and coaxial geometries. Appl Phys Lett 94:181106

    Article  Google Scholar 

  14. Najiminaini M, Vasefi F, Kaminska B, Carson JJL (2012) Nano-hole array structure with improved surface plasmon energy matching characteristics. Appl Phys Lett 100:043105

    Article  Google Scholar 

  15. Sturman B, Podivilov E, Gorkunov M (2011) Optical properties of periodic arrays of subwavelength slits in a perfect metal. Phys Rev B 84:205439

    Article  Google Scholar 

  16. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39

    Article  CAS  Google Scholar 

  17. Klein Koerkamp KJ, Enoch S, Segerink FB, van Hulst NF, Kuipers L (2004) Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phys Rev Lett 92:183901

    Article  Google Scholar 

  18. Orbons SM, Roberts A (2006) Resonance and extraordinary transmission in annular aperture arrays. Opt Express 14:12623

    Article  CAS  Google Scholar 

  19. Gordon R, Brolo AG, McKinnon A, Rajora A, Leathem B, Kavanagh KL (2004) Strong polarization in the optical transmission through elliptical nanohole arrays. Phys Rev Lett 92:037401

    Article  CAS  Google Scholar 

  20. Degiron A, Ebbesen TW (2005) The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures. J Opt A Pure Appl Opt 7:S90–S96

    Article  Google Scholar 

  21. Xu JJ, Guan P, Kvasnicka P, Gong H, Homola J, Yu QM (2011) Light transmission and surface-enhanced Raman scattering of quasi-3D plasmonic nanostructure arrays with deep and shallow Fabry-Perot nanocavities. J Phys Chem C 115:10996–11002

    Article  CAS  Google Scholar 

  22. Parsons J, Hendry E, Burrows CP, Auguié B, Sambles JR, Barnes WL (2009) Localized surface-plasmon resonance in periodic nondiffracting metallic nanoparticle and nanohole arrays. Phys Rev B 79:073412

    Article  Google Scholar 

  23. Lovera P, Jones D, Corbett B, O’Riordan A (2012) Polarization tunable transmission through plasmonic arrays of elliptical nanopores. Opt Express 20:25325

    Article  CAS  Google Scholar 

  24. Rodrigo SG, Mahboub O, Degiron A, Genet C, Garcia-Vidal FJ, Martin-Moreno L, Ebbesen TW (2010) Holes with very acute angles: a new paradigm of extraordinary optical transmission through strongly localized modes. Opt Express 18:23691–23697

    Article  CAS  Google Scholar 

  25. Bao YJ, Peng RW, Shu DJ, Wang M, Lu X, Shao J, Lu W, Ming NB (2008) Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array. Phys Rev Lett 101:087401

    Article  Google Scholar 

  26. Wang CL, Gu JQ, Han JG, Xing QR, Tian Z, Liu F, Chai L, Li YF, Hu ML, Wang QY, Lu XC, Zhang WL (2010) Role of mode coupling on transmission properties of subwavelength composite hole-patch structures. Appl Phys Lett 96:251102

    Article  Google Scholar 

  27. Ruan Z, Qiu M (2006) Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Phys Rev Lett 96:233901

    Article  Google Scholar 

  28. Subramania G, Foteinopoulou S, Brener I (2011) Nonresonant broadband funneling of light via ultrasubwavelength channels. Phys Rev Lett 107:163902

    Article  CAS  Google Scholar 

  29. Shen HH, Maes B (2012) Enhanced optical transmission through tapered metallic gratings. Appl Phys Lett 100:241104

    Article  Google Scholar 

  30. He RJ, Zhou XL, Fu YQ, Zhang YW (2011) Near-field optical experimental investigation of gold nanohole array. Plasmonics 6:171–176

    Article  CAS  Google Scholar 

  31. Wang DQ, Yu XL, Yu QM (2012) X-shaped quasi-3D plasmonic nanostructure arrays for enhancing electric field and Raman scattering. Nanotechnology 23:405201–405209

    Article  Google Scholar 

  32. Lin L, Roberts A (2011) Light transmission through nanostructured metallic films: coupling between surface waves and localized resonances. Opt Express 19:2626–2633

    Article  CAS  Google Scholar 

  33. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Foundation of China (grant no. 11004160) and the Fundamental Research Funds for the Central Universities (grant no. GK201303007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyue Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Qin, Y. & Zhang, Z. Extraordinary Optical Transmission Property of X-Shaped Plasmonic Nanohole Arrays. Plasmonics 9, 203–207 (2014). https://doi.org/10.1007/s11468-013-9613-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9613-z

Keywords

Navigation