Skip to main content
Log in

Terahertz Response of ZnS/Ge and ZnO/Ge Nanostructured Composites

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present a new set of nanostructured composites which can exhibit a phenomenon known as surface plasmon resonance in a broad frequency range from the deep infrared to the terahertz region. The structures are composites of two different kinds of non-overlapping spheres. These spheres are made from a high refractive index nonplasmonic material and a Drude-like plasmonic material. Our results are explained in the context of the extended Maxwell–Garnett theory. The effective permittivity and refractive index of zinc sulfide/Ge and zinc oxide/Ge composites have been calculated over terahertz frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kohler R et al (2002) Nature 417:156

    Article  Google Scholar 

  2. Li H, Cao JC, Lu JT, Han YJ (2008) Appl Phys Lett 92:221105

    Article  Google Scholar 

  3. Belkin MA et al (2008) Opt Express 16:3242

    Article  CAS  Google Scholar 

  4. Guo XG, Cao JC (2006) J Appl Phys 100:083112

    Article  Google Scholar 

  5. Lee M, Wanke MC (2007) Science 316:64

    Article  CAS  Google Scholar 

  6. Cao JC (2003) Phys Rev Lett 91:237401

    Article  CAS  Google Scholar 

  7. Maxwell JC (1892) Electricity and magnetism. Clarendon Press, Oxford UK

    Google Scholar 

  8. Van Beck LKH (1967) In: Birks JB (ed) Dielectric behavior of heterogeneous systems, vol 7. Heywood, London

    Google Scholar 

  9. Maxwell-Garnett JC (1904) Colours in metal glasses and in metallic films, vol. 203, Philos. Trans. R. Soc. London, Ser. A

  10. Bruggeman DAG (1935) Ann Phys (Paris) 24:636

    CAS  Google Scholar 

  11. Fujii M, Wada M, Kayashi S, Yamamoto K (1992) Phys Rev B 46:15930

    Article  CAS  Google Scholar 

  12. Doyle WT (1989) Phys Rev B 39:9852

    Article  Google Scholar 

  13. Ruppin R (2000) Opt Commun 182:273

    Article  CAS  Google Scholar 

  14. Shalaev VM (2002) Optical properties of nanostructured random media. Springer, New York

    Book  Google Scholar 

  15. Genzel L, Martin TP (1973) Surf Sci 34:33

    Article  CAS  Google Scholar 

  16. Smith GB (1977) J Phys D 10:L39

    Article  Google Scholar 

  17. Jackson JD (1962) Classical electrodynamics. Wiley, New York

    Google Scholar 

  18. Granqvist CG, Hunderi O (1978) Phys Rev B 18:2897

    Article  CAS  Google Scholar 

  19. Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic, New York

    Google Scholar 

  20. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York

    Book  Google Scholar 

  21. Kittel C (1976) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  22. Klingshirn C, Hauschild R, Fallert J, Kalt H (2007) Phys Rev B 75:115203

    Article  Google Scholar 

  23. Tang ZK et al (1998) Appl Phys Lett 72:3270

    Article  CAS  Google Scholar 

  24. Zhang W, Wong KS, Wang H, Tang ZK, Wong GKL, Jain R (1999) Appl Phys Lett 75:3321

    Article  CAS  Google Scholar 

  25. Nadeem MY, Ahmed W (2000) Turk J Phy 24:651

    CAS  Google Scholar 

  26. Han JG, Zhu ZY, Ray S, Azad AK, Zhang W, He M, Li S, Zhao Y (2006) Appl Phys Lett 89:031107

    Article  Google Scholar 

  27. Yannopapas V, Moroz A (2005) J Phys Cond Matt 17:3717

    Article  CAS  Google Scholar 

  28. Caglar M, Caglar Y, Ilican S (2006) J Opt Adv Mat 8:1410

    CAS  Google Scholar 

  29. Halevi P, Ramos-Mendieta F (2000) Phys Rev Lett 85:1875

    Article  CAS  Google Scholar 

  30. Sanchez AS, Halevi P (2003) J Appl Phys 94:797

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Yannopapas and Moroz for online EFFE2P code, a computer code to calculate the effective medium parameters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sadeghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadeghi, H., Zolanvar, A., Ranjgar, A. et al. Terahertz Response of ZnS/Ge and ZnO/Ge Nanostructured Composites. Plasmonics 9, 327–333 (2014). https://doi.org/10.1007/s11468-013-9628-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9628-5

Keywords

Navigation