Skip to main content
Log in

Ultra-Broadband Terahertz Absorbers Based on 4 × 4 Cascaded Metal-Dielectric Pairs

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present an ultra-broadband metamaterial absorber in the terahertz regime based on the proposed 4 × 4 cascaded metal-dielectric pairs, which would help to reduce the demand for fabrication precision. The generation mechanism of electromagnetic resonances and the formation process of the ultra-broadband absorption were investigated by finite-difference time-domain (FDTD) method. Numerical results showed that absorptivity of ∼92 % was obtained between 3.2 and 11.8 THz using the 4 × 4 structure. Such absorber was one of potential candidates for rough terahertz frequency estimator with an average detection resolution of 0.56 THz within a 9-THz range, which could be a supplement to the active terahertz spectrum analyzers with high resolution but limited measurement range (∼1 THz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pendry JB (2000) Phys Rev Lett 85:3966–3969

    Article  CAS  Google Scholar 

  2. Valentine J, Li JS, Zentgraf T, Bartal G, Zhang X (2009) Nat Mater 8:568–571

    Article  CAS  Google Scholar 

  3. Shelby RA, Smith DR, Schultz S (2001) Science 292:77–79

    Article  CAS  Google Scholar 

  4. Landy NI, Bingham CM, Tyler T, Jokerst N, Smith DR, Padilla WJ (2009) Phys Rev B 79:125104–125109

    Article  Google Scholar 

  5. Hu CG, Zhao ZY, Chen XN, Luo XG (2009) Opt Express 17:11039–11044

    Article  CAS  Google Scholar 

  6. Diem M, Koschny T, Soukoulis CM (2009) Phys Rev B 79:033101

    Article  Google Scholar 

  7. Tao H, Bingham CM, Strikwerda AC, Pilon D, Shrekenhamer D, Landy NI, Fan K, Zhang X, Pandilla WJ, Averitt RD (2008) Phys Rev B 78:241103

    Article  Google Scholar 

  8. Bouchon P, Koechlin C, Pardo F, Haidar R, Pelouard JL (2012) Opt Lett 37:1038–1040

    Article  CAS  Google Scholar 

  9. Shen XP, Cui TJ, Zhao JM, Ma HF, Jiang WX, Li H (2011) Opt Express 19:9401–9407

    Article  CAS  Google Scholar 

  10. Grant J, Ma Y, Saha S, Khalid A, Cumming DRS (2011) Opt Lett 36:3476–3478

    Article  CAS  Google Scholar 

  11. Ye YQ, Jin Y, He S (2010) J Opt Soc Am B 27:498–504

    Article  CAS  Google Scholar 

  12. Ding F, Cui Y, Ge X, Jin Y, He S (2012) Appl Phys Lett 100:103506

    Article  Google Scholar 

  13. Cui YX, Fung KH, Xu J, Ma HJ, Jin Y, He S, Fang NX (2012) Nano Lett 12:14431–1447

    Google Scholar 

  14. Dayal G, Ramakrishna SA (2013) J Opt 15:055106

    Article  Google Scholar 

  15. Zhang N, Zhou PH, Cheng DM, Weng XL, Xie JL, Deng LJ (2013) Opt Lett 38:1125–1127

    Article  CAS  Google Scholar 

  16. Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Nat Commun 2:517

    Article  Google Scholar 

  17. Yee D, Jang YD, Kim YC, Seo D (2010) Opt Lett 35:2532–2534

    Article  Google Scholar 

  18. Yokoyama S, Nakamura R, Nose M, Araki T, Yasui T (2008) Opt Express 16:13052–13061

    Article  Google Scholar 

  19. Smith DR, Vier DC, Koschny TH, Soukoulis CM (2005) Phys Rev E 71:036617

    Article  CAS  Google Scholar 

  20. Rusina A, Durach M, Nelson KA, Stockman MI (2008) Opt Express 16:18576–18589

    Article  CAS  Google Scholar 

  21. Hu CG, Li X, Feng Q, Chen X, Luo X (2010) Opt Express 18:6598–6603

    Article  CAS  Google Scholar 

  22. Hu FR, Wang L, Quan BG, Xu XL, Li Z, Wu ZG, Pan XC (2013) J Phys D Appl Phys 46:195103

    Article  Google Scholar 

  23. Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M (2010) Appl Phys Lett 96:2511041–2511043

    Google Scholar 

  24. Alves F, Grbovic D, Kearney B, Karunasiri G (2012) Opt Lett 37:1886–1888

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Basic Research Program of China (2013CBA01700 and 2012CB315704), Natural Science Foundation of China (61325023), Research Fund for the Doctoral Program of Higher Education of China (20130184110015), and the Funds for the Excellent Ph.D. Dissertation of Southwest Jiaotong University in 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianshan Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Yan, L., Pan, W. et al. Ultra-Broadband Terahertz Absorbers Based on 4 × 4 Cascaded Metal-Dielectric Pairs. Plasmonics 9, 951–957 (2014). https://doi.org/10.1007/s11468-014-9701-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9701-8

Keywords

Navigation