Skip to main content
Log in

Plasmonic Property and Stability of Core-Shell Au@SiO2 Nanostructures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Au nanorod (Au NR) is one of the most studied colloidal nanostructures for its tunable longitudinal surface plasmon resonance (SPRL) property in the near infrared region. And surface coating Au NRs into core-shell nanostructures is particularly important for further investigation and possible applications. In this paper, Au NRs colloids were synthesized using an improved seed method. Then as-prepared Au NRs were coated with SiO2 to form a core-shell nanostructure (Au@SiO2) with different shell thickness. And the influence of SiO2 shell on the SPRL of Au NRs was investigated based on the experimental results and FDTD simulations. Under the 808 nm laser irradiating, the stability of Au@SiO2 was studied. Compared with Au NRs, the Au@SiO2 is stable with increasing laser power (up to 8 W), whereas Au NRs undergo a shape deformation from rod to spherical nanoparticle when the laser power is 5 W. The high stability and tunable optical properties of core-shell structured Au@SiO2, along with advantages of SiO2, show that Au@SiO2 composites are promising in designing plasmonic photothermal properties or further applications in nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gutiérrez-Sánchez C, Pita M, Vaz-Domínguez C, Shleev S, De Lacey AL (2012) Gold nanoparticles as electronic bridges for laccase-based biocathodes. J Am Chem Soc 134:17212–17220

    Article  Google Scholar 

  2. Li H, Yuan K, Zhang Y, Wang J (2013) Synthesis of Au-SiO2 asymmetric clusters and their application in ZnO nanosheet-based dye-sensitized solar cells. Appl Mater Interfaces 5:5601–5608

    Article  CAS  Google Scholar 

  3. Zijlstra P, Paulo PMR, Orrit M (2012) Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nanotechnol 7:397–382

    Article  Google Scholar 

  4. Liu G, Li Y, Duan G, Wang J, Liang C, Cai W (2012) Tunable surface plasmon resonance and strong SERS performances of Au opening-nanoshell ordered arrays. ACS Appl Mater Interfaces 4:1–5

    Article  Google Scholar 

  5. Mallick S, Sun IC, Kim K, Yil DK (2013) Silica coated gold nanorods for imaging and photo-thermal therapy of cancer cells. J Nanosci Nanotechnol 13:3223–3229

    Article  CAS  Google Scholar 

  6. Zhang Z, Wang L, Wang J, Jiang X, Li X, Hu Z, Ji Y, Wu X, Chen C (2012) Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater 24:1418–1423

    Article  CAS  Google Scholar 

  7. Hu Y, Lu L, Liu J, Chen W (2012) Direct growth of size-controlled gold nanoparticles on reduced graphene oxide film from bulk gold by tuning electric field: effective methodology and substrate for surface enhanced Raman scattering study. J Mater Chem 22:11994–12000

    Article  CAS  Google Scholar 

  8. Cohen-Karni T, Jeong KJ, Tsui JH, Reznor G, Mustata M, Wanunu M, Graham A, Marks C, Bell DC, Langer R, Kohane DS (2012) Nanocoposite gold-silk nanofibers. Nano Lett 12:5403–5406

    Article  CAS  Google Scholar 

  9. Yang SC, Kobori H, He CL, Lin MH, Chen HY, Li CC, Kanehara M, Teranishi T, Gwo S (2010) Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes. Nano Lett 10:632–637

    Article  CAS  Google Scholar 

  10. Li H, Kan C, Yi Z, Ding X, Cao Y, Zhu JJ (2010) Synthesis of one dimensional gold nanostructures. J Nanomater ID:962718(8pp)

  11. Kan C, Zhu J, Wang C (2009) Ag nanoparticle-filled polymer shell formed around Au nanoparticle core via ultrasound-assisted spherulite growth. J Cryst Growth 311:1565–1570

    Article  CAS  Google Scholar 

  12. Kan C, Wang C, Li H, Qi J, Zhu J, Li Z, Daning Shi D (2010) Gold microplates with well-defined shapes. Small 6:1768–1775

    Article  CAS  Google Scholar 

  13. Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901

    Article  Google Scholar 

  14. Zhong L, Zhou X, Bao S, Shi Y, Wang Y, Hong S, Huang Y, Wang X, Xie Z, Zhang Q (2011) Rational design and SERS properties of side-by-side, end-to-end and end-to-side assemblies of Au nanorods. Mater Chem 21:14448–14455

    Article  CAS  Google Scholar 

  15. Ni W, Mosquera RA, Pérez-Juste J, Liz-Marzán LM (2010) Evidence for hydrogen-bonding-directed assembly of gold nanorods in aqueous solution. J Phys Chem Lett 1:1181–1185

    Article  CAS  Google Scholar 

  16. Wang Y, DePrince AE, Gray SK, Lin XM, Pelton MP (2010) Solvent-mediated end-to-end assembly of gold nanorods. J Phys Chem Lett 1:2692–2698

    Article  CAS  Google Scholar 

  17. Luo T, Huang P, Gao G, Shen G, Fu S, Cui D, Zhou C, Re Q (2011) Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging. Opt Express 19:17030–17039

    Article  CAS  Google Scholar 

  18. Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233–5237

    Article  CAS  Google Scholar 

  19. Fava D, Nie Z, Winnik MA, Kumacheva E (2008) Evolution of self- assembled structures of polymer-terminated gold nanorods in selective solvent. Adv Mater 20:4318–4322

    Article  CAS  Google Scholar 

  20. Sun Z, Ni W, Yang Z, Kou X, Li L, Wang J (2008) pH-controlled reversible assembly and disassembly of gold nanorods. Small 4:1287–1292

    Article  CAS  Google Scholar 

  21. Gorelikov I, Matsuura N (2008) Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. Nano Lett 8:369–373

    Article  CAS  Google Scholar 

  22. Huang H, Liu X, Hu T, Chu PK (2010) Ultra-sensitive detection of cysteine by gold nanorod assembly. Biosens Bioelectron 25:2078–2083

    Article  CAS  Google Scholar 

  23. Wang L, Zhu Y, Xu L, Chen W, Kuang H, Liu L, Agarwal A, Xu C, Kotov NA (2010) Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing. Angew Chem Int Ed 49:5472–5475

    Article  CAS  Google Scholar 

  24. Huang H, Qu C, Liu X, Huang S, Xu Z, Zhu Y, Chu PK (2011) Amplification of localized surface plasmon resonance signals by a gold nanorod assembly and ultra-sensitive detection of mercury. Chem Commun 47:6897–6899

    Article  CAS  Google Scholar 

  25. Wang J, Zhang P, Li CM, Li YF, Huang CZ (2012) A highly selective and colorimetric assay of lysine by molecular-driven gold nanorods assembly. Biosens Bioelectron 34:197–201

    Article  CAS  Google Scholar 

  26. Tallury P, Payton K, Santra S (2008) Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications. Nanomedicine 3:579–592

    Article  CAS  Google Scholar 

  27. Wu H-L, Kuo C-H, Huang MH (2010) Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral. Langmuir 26:12307–12313

    Article  CAS  Google Scholar 

  28. Liu X, Xu H, Xia H, Wang D (2012) Rapid seeded growth of monodisperse, quasi-spherical, citrate-stabilized gold nanoparticles via H2O2 reduction. Langmuir 28:13720–13726

    Article  CAS  Google Scholar 

  29. Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13:1389–1393

    Article  CAS  Google Scholar 

  30. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  31. Ye X, Jin L, Caglayan H, Chen J, Xing G, Zheng C, Doan-Nguyen V, Kang Y, Engheta N, Kagan CR, Murray CB (2012) Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 6:2804–2817

    Article  CAS  Google Scholar 

  32. Liz-Marzán LM, Mulvaney P (2003) The assembly of coated nanocrystals. J Phys Chem B 107:7312–7326

    Article  Google Scholar 

  33. Rodríguez-Fernández J, Pastoriza-Santos I, Pérez-Juste J, de Abajo FJG, Liz-Marzán LM (2007) The effect of silica coating on the optical response of sub-micrometer gold spheres. J Phys Chem C 111:13361–13366

    Article  Google Scholar 

  34. Liu W, Zhu Z, Deng K, Li Z, Zhou Y, Qiu H, Gao Y, Che S, Tang Z (2013) Gold nanorod@chiral mesoporous silica core–shell nanoparticles with unique optical properties. J Am Chem Soc 135:9659–9664

    Article  CAS  Google Scholar 

  35. Li N, Yu Z, Pan W, Han Y, Zhang T, Tang B (2013) A nar-infrared light-triggered nanocarrier with reversible DNA valves for intracellular controlled release. Adv Funct Mater 23:2255–2262

    Article  CAS  Google Scholar 

  36. Chen YS, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S (2011) Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett 11:348–354

    Article  CAS  Google Scholar 

  37. Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2006) Silica-coating and hydrophobation of CTAB-stabilized gold nanorods. Chem Mater 18:2465–2467

    Article  CAS  Google Scholar 

  38. Fernández-López C, Mateo-Mateo C, Álvarez-Puebla RA, Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM (2009) Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles. Langmuir 25:13894–13899

    Article  Google Scholar 

  39. Juvé V, Cardinal MR, Lombardi A, Crut A, Maioli P, Pérez-Juste J, Liz-Marzán LM, Fatti ND, Vallée F (2013) Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods. Nano Lett 13:2234–2240

    Article  Google Scholar 

  40. Wang G, Chen Z, Chen L (2011) Mesoporous silica-coated gold nanorods: towards sensitive colorimetric sensing of ascorbic acid via target-induced silver overcoating. Nanoscale 3:1756–1759

    Article  CAS  Google Scholar 

  41. Ming T, Zhao L, Chen HJ, Woo KC, Wang J, Lin HQ (2011) Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod–fluorophore hybrid nanostructures. Nano Lett 11:2296–2303

    Article  CAS  Google Scholar 

  42. Lee S, Anderson LJ, Payne CM, Hafner JH (2011) Structural transition in the surfactant layer that surrounds gold nanorods as observed by analytical surface-enhanced Raman spectroscopy. Langmuir 27:14748–14756

    Article  CAS  Google Scholar 

  43. DuChene JS, Almeida RP, Wei WD (2012) Facile synthesis of anisotropic Au@SiO2 core-shell nanostructures. Dalton Trans 41:7879–7882

    Article  CAS  Google Scholar 

  44. Wu C, Xu QH (2009) Stable and functionable mesoporous silica-coated gold nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors. Langmuir 25:9441–9446

    Article  CAS  Google Scholar 

  45. Zhan Q, Qian J, Li X, He S (2010) A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging. Nanotechnology 21:12, 055704

    Article  Google Scholar 

  46. Quinten M (2011) Optical properties of nanoparticle system: mie and beyond. Wiley-VCH

  47. Ni W, Ba H, Lutich AA, Jäckel F, Feldmann J (2012) Enhancing single-nanoparticle surface-chemistry by plasmonic overheating in an optical trap. Nano Lett 12:4647–4650

    Article  CAS  Google Scholar 

  48. Wang W, Cheng W, Xing X, Mo G, Cai Q, Chen Z, Wu Z (2010) Temperature-induced interfacial change in Au@SiO2 core-shell nanoparticles detected by extended x-ray absorption fine structure. J Phys Chem C 114:41–49

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by National Natural Science Foundation of China (Nos. 11274173, 11374159, 61222403) and Fundamental Research Funds for the Central Universities (NZ2013304, NJ20140005). TEM measurements in Nanjing Medical University are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caixia Kan or Daning Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Kan, C., Cong, B. et al. Plasmonic Property and Stability of Core-Shell Au@SiO2 Nanostructures. Plasmonics 9, 1007–1014 (2014). https://doi.org/10.1007/s11468-014-9708-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9708-1

Keywords

Navigation