Skip to main content
Log in

The Ag Nanoparticles/TiO2 Thin Film Device for Enhanced Photoconduction and Role of Traps

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Glancing angle deposition technique was carried out to synthesize silver (Ag) nanoparticles (NPs) on titanium dioxide (TiO2) thin film (TF) over n-type Si substrate. The presence of Ag NPs on the TiO2 TF enhanced the photoconduction as compared to bare TiO2 TF. The maximum photosensitivity of the Ag NPs/TiO2 TF (plasmonic) device was recorded ∼700 times than that of the bare TiO2 TF at −3 V. The devices were UV sensitive and maximum internal gain for the plasmonic device was calculated to be ∼210 at 380 nm. The inversion capacitance of the plasmonic devices responded with a.c. signal efficiently as compared to bare TiO2 TF. Under applied sweeping top electrode voltage Vs ±10 V, the corresponding maximum memory window of 4.5 V was observed for plasmonic device in its capacitance (C)–voltage (V) curve. The Ag NPs-patterned TiO2 TF device possessed higher impedance than that of the bare TiO2 TF-based device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  2. Linsebigler L, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  3. Nakata K, Ochiai T, Murakami T, Fujishima A (2012) Photoenergy conversion with TiO2 photocatalysis: new materials and recent applications. Electrochim Acta 84:103–111

    Article  CAS  Google Scholar 

  4. Yin WJ, Chen S, Yang JH, Gong XG, Yan Y, Wei SH (2010) Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction. Appl Phys Lett 96:221901-1–221901-3

    Google Scholar 

  5. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) A plasmonic photocatalyst ponsisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130:1676–1680

    Article  CAS  Google Scholar 

  6. Tofflinger JA, Pedrueza E, Chirvony V, Leendertz C, Calzada RG, Abargues R, Gref O, Roczen M, Korte L, Pastor JPM, Rech B (2013) Photoconductivity and optical properties of silicon coated by thin TiO2 film in situ doped by Au nanoparticles. Phys Status Solidi A 210:687–694

    Article  Google Scholar 

  7. Ganguly A, Mondal A, Dhar JC, Singh NK, Choudhury S (2013) Enhanced visible light absorption by TiO2 film patterned with Ag nanoparticles arrays. Phys E 54:326–330

    Article  CAS  Google Scholar 

  8. Mondal A, Singh NK, Chinnamuthu P, Dhar JC, Bhattacharyya A, Choudhury S (2012) Enlarged photodetection using SiOx nanowire arrays. IEEE Photon Tech L 24(22):2020–2023

    Article  CAS  Google Scholar 

  9. Lee C, Kim I, Shin H, Kim S, Cho J (2010) Nonvolatile memory properties of Pt nanoparticle-embedded TiO2 nanocomposite multilayers via electrostatic layer-by-layer assembly. Nanotechnology 21:185704-1–185704-7

    Google Scholar 

  10. Lan X, Ou X, Cao Y, Tang S, Gong C, Xu B, Xia Y, Yin J, Li A, Yan F, Liu Z (2013) The effect of thermal treatment induced inter-diffusion at the interfaces on the charge trapping performance of HfO2/Al2O3 nanolaminate-based memory devices. J. Appl. Phys. 114: 044104 - 044104–7

  11. Spiga S, Driussi F, Lamperti A, Congedo G, Salicio O (2012) Effects of thermal treatments on the trapping properties of HfO2 films for charge trap memories. Appl Phys Express 5:021102-1–021102-3

    Article  Google Scholar 

  12. Lan X, Ou X, Lei Y, Gong C, Liu Z (2013) The interface inter-diffusion induced enhancement of the charge-trapping capability in HfO2/Al2O3 multilayered memory devices .Appl. Phys. Lett. 103: 192905 - 192905–5

  13. Choudhuri B, Mondal A, Dhar J C, Singh NK, Goswami T, Chattopadhyay KK (2014) Enhanced photocurrent from generated photothermal heat in indium nanoparticles embedded TiO2 film. Appl. Phys. Lett. 102 (23): 233108 - 233108–4

  14. Ganguly A, Mondal A, Choudhuri B, Goswami T, Chattopadhyay KK (2014) Ag nanoparticles patterned TiO2 thin film plasmonic detector for enlarged light detection. Adv Sci Eng Med 6:797–801

    Article  CAS  Google Scholar 

  15. Chinnamuthu P, Mondal A, Singh NK, Dhar JC, Chattopadhyay KK, Bhattacharya S (2012) Band gap enhancement of glancing angle deposited TiO2 nanowire array. J. Appl. Phys. 112 : 054315 - 054315–6

  16. Das SN, Kar JP, Myoung JM (2011) Nanowires fundamental research. InTech Publishing, Rijeka, p 174

    Google Scholar 

  17. Das SN, Moon KJ, Kar JP, Choi JH, Xiang (2010) ZnO single nanowire-based UV detectors. J Appl. Phys, lett. 97: 022103 - 022103–3

  18. Sze SM, Ng KK (2008) Physics of semiconductor devices. John Wiley & Sons, New Jersey, p 154

    Google Scholar 

  19. Williams RH, Robinson GY (1985) Physics and chemistry of III–V compound semiconductor interfaces. Plenum Press, New York, p 86

    Google Scholar 

  20. Werner JH, Guttler HH (1991) Barrier inhomogeneities at Schottky contacts. J Appl Phys 69:1522–1533

    Article  CAS  Google Scholar 

  21. Nayfeh OM, Rao S, Smith A, Therrien J, Nayfeh MH (2004) Thin film silicon nanoparticle UV photodetector. IEEE Photon Tech L 16:1927–1929

    Article  CAS  Google Scholar 

  22. Zhang M, Zhang H, Kaibo L, Chen W, Zhou J, Shen L, Ruan S (2012) Ultraviolet photodetector with high internal gain enhanced by TiO2/SrTiO3 heterojunction. Opt Express 20:5936–5941

    Article  CAS  Google Scholar 

  23. Zhang M, Gu X, Kaibo L, Dong W, Ruan S, Chen Y, Zhang H (2013) High response solar-blind ultraviolet photodetector based on Zr0.5Ti0.5O2 film. Appl Surf Sci 268:312–316

    Article  CAS  Google Scholar 

  24. Mondal A, Dhar JC, Chinnamuthu P, Singh NK, Chattopadhyay KK, Das SK, Das SC, Bhattacharyya A (2013) Electrical properties of vertically oriented TiO2 nanowire arrays synthesized by glancing angle deposition technique. Electron Mater Lett 9(2):213–217

    Article  CAS  Google Scholar 

  25. Dhar JC, Mondal A, Chinnamuthu P, Singh NK (2013) Low leakage TiO2 nanowire dielectric MOS device using Ag Schottky gate contact. IEEE T Nanotechnol 12:948–950

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Science and Technology, Govt. of India, TEQIP-II, and National Institute of Technology Agartala for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, A., Ganguly, A., Das, A. et al. The Ag Nanoparticles/TiO2 Thin Film Device for Enhanced Photoconduction and Role of Traps. Plasmonics 10, 667–673 (2015). https://doi.org/10.1007/s11468-014-9852-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9852-7

Keywords

Navigation