Skip to main content
Log in

Tunable Plasmon Resonance and Fluorescence of Au/ZnS/CdS Core/Shell Nanorods

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Au/ZnS/CdS core/shell nanorods were synthesized via layer-by-layer over-growing sulfide semiconductors ZnS and CdS onto Au-core nanorods, and the thickness of ZnS and CdS layers was tuned by adjusting the amounts of the added metal (Zn/Cd) salts. Owing to efficient interaction between the metal and semiconductor components in the multi-core/shell nanorods, we observed redshift of the surface plasmon resonance (SPR) band, enhancement of the SPR intensity, and generation of a new SPR band. Furthermore, the spectral redshift and enhancement were also observed in the excitonic fluorescence of the Au/ZnS/CdS core/shell nanorods, which is caused by the interaction between activated excitons in the CdS shell and the transverse SPR of the Au nanorod and can be tuned by adjusting the thickness of the middle shell (ZnS). These observations have prospective applications in active plasmonic nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mokari T, Rothenberg E, Popov I, Costi R, Banin U (2004) Science 304:1787–1790

    Article  CAS  Google Scholar 

  2. Chen H, Ming T, Zhao L, Wang F, Sun LD, Wang J, Yan CH (2010) Nano Today 5:494–505

    Article  CAS  Google Scholar 

  3. Lin HY, Chen YF, Wu JG, Wang DI, Chen CC (2006) Appl Phys Lett 88:161911

    Article  Google Scholar 

  4. Lee J–S, Shevchenko EV, Talapin DV (2008) J Am Chem Soc 130:9673–9675

    Article  CAS  Google Scholar 

  5. Jin Y, Gao X (2009) Nat Nanotechnol 4:571–576

    Article  CAS  Google Scholar 

  6. Shaviv E, Banin U (2010) ACS Nano 4:1529–1538

    Article  CAS  Google Scholar 

  7. Zhang J, Tang Y, Lee K, Ouyang M (2010) Nature 466:91–95

    Article  CAS  Google Scholar 

  8. Khon E, Mereshchenko A, Tarnovsky AN, Acharya K, Klinkova A, Hewa-Kasakarage NN, Nemitz I, Zamkov M (2011) Nano Lett 11:1792–1799

    Article  CAS  Google Scholar 

  9. Shaviv E, Schubert O, Alves-Santos M, Goldoni G, Felice RD, Vallée F, Fatti ND, Banin U, Sönnichsen C (2011) ACS Nano 5:4712–4719

    Article  CAS  Google Scholar 

  10. DuChene JS, Sweeny BC, Johnston-Peck AC, Su D, Stach EA, Wei WD (2014) Angew Chem Int Ed 53:7887–7891

    Article  CAS  Google Scholar 

  11. Moench W (2007) Appl Phys A 87:359–366

    Article  CAS  Google Scholar 

  12. Ming T, Zhao L, Chen H, Woo KC, Wang J, Lin HQ (2011) Nano Lett 11:2296–2303

    Article  CAS  Google Scholar 

  13. Zhu Q, Zheng S, Lin S, Liu TR, Jin C (2014) Nanoscale 6:7273–7242

    Google Scholar 

  14. Lee J, Govorov AO, Dulka J, Kotov NA (2004) Nano Lett 4:2323

    Article  CAS  Google Scholar 

  15. Sun Z, Yang Z, Zhou J, Yeung MH, Ni W, Wu H, Wang J (2009) Angew Chem Int Ed 48:2881

    Article  CAS  Google Scholar 

  16. Roca M, Haes AJ (2008) J Am Chem Soc 130:14273

    Article  CAS  Google Scholar 

  17. Agarwal A, Lilly GD, Govorov AO, Kotov NA (2008) J Phys Chem C 112:18314–18320

    Article  CAS  Google Scholar 

  18. Chen W–T, Yang T–T, Hsu Y–J (2008) Chem Mater 20:7204–7206

    Article  CAS  Google Scholar 

  19. Li M, Yu XF, Liang S, Peng X–N, Yang Z–J, Wang Y–L, Wang QQ (2011) Adv Funct Mater 21:1788–1794

    Article  CAS  Google Scholar 

  20. Wang H, Sun Z, Lu Q, Zeng F, Su D (2012) Small 8:1167–1172

    Article  CAS  Google Scholar 

  21. Liang S, Liu XL, Yang YZ, Wang YL, Wang JH, Yang ZJ, Wang LB, Jia SF, Yu XF, Zhou L, Wang JB, Zeng J, Wang QQ, Zhang Z (2012) Nano Lett 12:5281–5286

    Article  CAS  Google Scholar 

  22. Zhang J, Tang Y, Lee K, Ouyang M (2010) Science 327:1634

    Article  CAS  Google Scholar 

  23. Yang T–T, Chen W–T, Hsu Y–J, Wei K–H, Lin T–Y, Lin T–W (2010) J Phys Chem C 114:11414–11420

    Article  CAS  Google Scholar 

  24. Elim HI, Ji W, Yang J, Lee JY (2008) Appl Phys Lett 92:251106

    Article  Google Scholar 

  25. J–S L, Shevchenko EV, Talapin DV (2008) J Am Chem Soc 130:9673–9675

    Article  Google Scholar 

  26. Jana NR, Gearheart L, Murphy CJ (2001) J Phys Chem B 105:4065

    Article  CAS  Google Scholar 

  27. Huang H, Liu X, Zeng Y, Yu X, Liao B, Yi P, Chu PK (2009) Biomaterials 30:5622–5630

    Article  CAS  Google Scholar 

  28. Green MA, Pillai S (2012) Nat Photonics 6:130–132

    Article  CAS  Google Scholar 

  29. Zhuang Z, Lu X, Peng Q, Li Y (2010) J Am Chem Soc 132:1819

    Article  CAS  Google Scholar 

  30. Saunders AE, Ghezelbash A, Sood P, Korgel BA (2008) Langmuir 24:9043

    Article  CAS  Google Scholar 

  31. Ray K, Badugu R, Lakowicz JR (2006) Langmuir 22:8374

    Article  CAS  Google Scholar 

  32. Cheng D, Xu QH (2007) Chem Commun. 248

  33. Liu N, Prall BS, Klimov VI (2006) J Am Chem Soc 128:15362

    Article  CAS  Google Scholar 

  34. Little RB, El-Sayed MA, Bryant GW, Burke S (2001) J Chem Phys 114:1813

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Natural Science Foundation of China (10534030, 10904119) and the National Program on Key Science Research (2006CB921500) for support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X-F Yu or Q-Q Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YL., Liang, S., Li, M. et al. Tunable Plasmon Resonance and Fluorescence of Au/ZnS/CdS Core/Shell Nanorods. Plasmonics 10, 919–923 (2015). https://doi.org/10.1007/s11468-015-9880-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9880-y

Keywords

Navigation