Skip to main content
Log in

Dopamine-Induced Growth of Au and Ag Nanoparticles on ITO Substrate and Their Application in PCPDTBT-Based Polymer Solar Cell

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The direct attachment and growth of gold or silver nanoparticles (NPs) on indium tin oxide (ITO) surfaces was demonstrated using a simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method by chemical reduction of the precursor metal salts with dopamine aqueous solution. Ag NPs on ITO substrate were approximately spherical with an average particle size of about 57 nm, but had a wide particle size distribution. Compared with Ag NPs, under the same 10 SILAR cycles, Au NPs have higher density packing and smaller average particle size of about 36 nm. XRD characterization and surface chemistry analysis confirmed the formation of Ag and Au NPs on ITO substrate with small amounts of dopamine-quinone adsorbed on the surface of them. Although Au NPs showed characteristic plasmon absorption, this did not result in performance enhancement in solar cell with the structure of ITO/ZnO/PCPDTBT:[6,6]-phenyl C71/MoO3/Ag because of the energy level mismatch between ZnO and dopamine molecules adsorbed on the surface of metal NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Park SH, Roy A, Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100 %. Nat Photonics 3:297–303

    Article  CAS  Google Scholar 

  2. Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin PG, Kim Y, Anthopoulos TD, Stavrinou PN, Bradley DDC, Nelson J (2008) Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends. Nat Mater 7:158–164

    Article  CAS  Google Scholar 

  3. Liang YY, Xu Z, Xia JB, Tsai ST, Wu Y, Li G, Ray C, Yu LP (2010) For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22:E135–E138

    Article  CAS  Google Scholar 

  4. Shaw PE, Ruseckas A, Samuel IDW (2008) Exciton diffusion measurements in poly (3-hexylthiophene). Adv Mater 20:3516–3520

    Article  CAS  Google Scholar 

  5. Mayer AC, Scully SR, Hardin BE, Rowell MW, McGehee MD (2007) Polymer-based solar cells. Mater Today 10:28–33

    Article  CAS  Google Scholar 

  6. Yang XH, Uddin A, Wright M (2012) Plasmon enhanced light absorption in bulk heterojunction organic solar cells. Phys Status Solidi (RRL) 6:199–201

    Article  CAS  Google Scholar 

  7. Uddin A, Yang XH (2014) Surface plasmon enhanced organic solar cell with different silver nanosphere sizes. J Nanosci Nanotechnol 14:5752–5760

    Article  CAS  Google Scholar 

  8. Kumar V, Wang HM (2013) Plasmonic Au nanoparticles for enhanced broadband light absorption in inverted organic photovoltaic devices by plasma assisted physical vapour deposition. Org Electron 14:560–568

    Article  CAS  Google Scholar 

  9. Fung DDS, Qiao L, Choy WCH, Wang C, Sha WEI, Xie F, He S (2011) Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT–PSS layer. J Mater Chem 21:16349–16356

    Article  CAS  Google Scholar 

  10. Choi H, Ko SJ, Choi Y, Joo P, Kim T, Lee BR, Jung JW, Choi HJ, Cha M, Jeong JR et al (2013) Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nat Photonics 7:732–738

    Article  CAS  Google Scholar 

  11. Li XH, Choy WCH, Lu HF, Sha WEI, Ho AHP (2013) Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles. Adv Funct Mater 23:2728–2735

    Article  CAS  Google Scholar 

  12. Emmanuel S, Emmanuel K (2013) Nanoparticle-based plasmonic organic photovoltaic devices. Mater Today 16:133–146

    Article  Google Scholar 

  13. Yu ET, Van de Lagemaat J (2011) Photon management for photovoltaics. MRS Bull 36:424–428

    Article  CAS  Google Scholar 

  14. Aatwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–214

    Article  Google Scholar 

  15. Lin R, Wright M, Puthen Veettil B, Uddin A (2014) Enhancement of ternary blend organic solar cell efficiency using PTB7 as a sensitizer. Synth Met 192:113–118

    Article  CAS  Google Scholar 

  16. Li W, Ma ZY, Bai GQ, Hu JM, Guo XH, Dai B, Jia X (2015) Dopamine-assisted one-step fabrication of Ag@AgCl nanophotocatalyst with tunable morphology, composition and improved photocatalytic performance. Appl Catal B Environ 174–175:43–48

    Google Scholar 

  17. Ma Y, Niu H, Zhang X, Cai Y (2011) One-step synthesis of silver/dopamine nanoparticles and visual detection of melamine in raw milk. Analyst 136:4192–4196

    Article  CAS  Google Scholar 

  18. Ferraria AM, Carapeto AP, Do Rego AMB (2012) X-ray photoelectron spectroscopy: silver salts revisited. Vacuum 86:1988–1991

    Article  CAS  Google Scholar 

  19. Qin L, Li X, Kang S, Mu J (2015) Gold nanoparticles conjugated dopamine as sensing platform for SERS detection. Colloids Surf B Biointerfaces 126:210–216

    Article  CAS  Google Scholar 

  20. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  21. Bu Y, Lee S (2012) Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and AgcoreAushell nanoparticles. ACS Appl Mater Interfaces 4:3923–3931

    Article  CAS  Google Scholar 

  22. Bu Y, Lee S (2013) Optical properties of dopamine molecules with silver nanoparticles as surface-enhanced Raman scattering (SERS) substrates at different pH conditions. J Nanosci Nanotechnol 13:5992–5996

    Article  CAS  Google Scholar 

  23. Pande S, Jana S, Sinha AK, Sarkar S, Basu M, Pradhan M, Pal A, Chowdhury J, Pal T (2009) Dopamine molecules on Aucore-Agshell bimetallic nanocolloids: Fourier transform infrared, Raman, and surface-enhanced Raman spectroscopy study aided by density functional theory. J Phys Chem C 113:6989–7002

    Article  CAS  Google Scholar 

  24. McGashen ML, Davis KL, Morris MD (1990) Surface-enhanced Raman scattering of dopamine at polymer-coated silver electrodes. Anal Chem 62:846–849

    Article  Google Scholar 

  25. An JH, El-Said WA, Yea CH, Kim TH, Choi JW (2011) Surface-enhanced Raman scattering of dopamine on self-assembled gold nanoparticles. J Nanosci Nanotechnol 11:4424–4429

    Article  CAS  Google Scholar 

  26. Kaya M, Volkan M (2012) New approach for the surface enhanced resonance Raman scattering (SERRS) detection of dopamine at picomolar (pM) levels in the presence of ascorbic acid. Anal Chem 84:7729–7735

    Article  CAS  Google Scholar 

  27. Mohammad-Shiri H, Ghaemi M, Riahi S, Akbari-Sehat A (2011) Computational and electrochemical studies on the redox reaction of dopamine in aqueous solution. Int J Electrochem Sci 6:317–336

    CAS  Google Scholar 

  28. Nam HJ, Kim B, Ko MJ, Jin M, Kim JM, Jung DY (2012) A new mussel-inspired polydopamine sensitizer for dye-sensitized solar cells: controlled synthesis and charge transfer. Chem Eur J 18:14000–14007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (11475017) and CSC Scholarship (201407095076). This program has also been supported by the Australian Government through the Australian Renewable Energy Agency (ARENA). Responsibility for the views, information, or advice expressed herein is not accepted by the Australian Government. We are also grateful to all of our OPV group members for the useful discussions and support during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luting Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Chan, K.H. & Uddin, A. Dopamine-Induced Growth of Au and Ag Nanoparticles on ITO Substrate and Their Application in PCPDTBT-Based Polymer Solar Cell. Plasmonics 12, 345–351 (2017). https://doi.org/10.1007/s11468-016-0270-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0270-x

Keywords

Navigation