Skip to main content
Log in

Gold Cone Metasurface MIC Sensor with Monolayer of Graphene and Multilayer of Graphite

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This report makes a comparison between the spectrum features of plasmonic metamaterial metal-insulator-conductor (MIC) sensor with a monolayer of graphene and another MIC sensor with a multilayer of graphite as the back reflector. In both structures, the silicon substrate as an insulator layer was sandwiched between subwavelength periodic nanogold cones as the first layer and graphene and graphite as the third layer, respectively. Nanolayer of chromium nanorods was also considered in the structure of MIC sensors as an interface layer between silicon and nanogold cone metasurface. The performance of the sensor was evaluated under different incident polarized light angles and different thickness of the metasurface when the metasurface infiltrated with seawater and air. The transmission spectrum of monolayer graphene-based MIC sensor, respecting to s-polarized waves, reveals prominent feature to detect the air rather than seawater in invisible regime. Meanwhile, the reflection spectrum of graphite-based MIC sensor provides ∼0 % reflection under resonance condition regarding s- and p-polarized waves for detecting air in visible spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Atwater HA (2007) The promise of plasmonics. Sci Am 296(4):56–62

    Article  CAS  Google Scholar 

  2. Vasile GC, Popescu AA, Stafe M, Koziukhin SA, Savastru D, Donţu S, Neguţu C (2013) Plasmonic waveguides features correlated with surface plasmon resonance performed with a low refractive index prism. Changes 4(10):5

    Google Scholar 

  3. Berini P, De Leon I (2012) Surface plasmon-polariton amplifiers and lasers. Nat Photonics 6(1):16–24

    Article  CAS  Google Scholar 

  4. Dang X, Qi J, Klug MT, Chen PY, Yun DS, Fang NX, Hammond PT, Belcher AM (2013) Tunable localized surface plasmon-enabled broadband light-harvesting enhancement for high-efficiency panchromatic dye-sensitized solar cells. Nano Lett 13(2):637–642

    Article  CAS  Google Scholar 

  5. Huang YJ, Wen GJ, Li J, Zhu WR, Wang P, Sun YH (2013) Wide-angle and polarization-independent metamaterial absorber based on snowflake-shaped configuration. J Electromagn Waves Appl 27(5):552–559

    Article  Google Scholar 

  6. Grady NK, Heyes JE, Chowdhury DR, Zeng Y, Reiten MT, Azad AK, Taylor AJ, Dalvit DAR, Chen H-T (2013) Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340(6138):1304–1307

    Article  CAS  Google Scholar 

  7. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  8. Murray WA, Barnes WL (2007) Plasmonic materials. Adv Mater 19(22):3771–3782

    Article  CAS  Google Scholar 

  9. Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98(1):011101

    Article  Google Scholar 

  10. Polo J, Mackay T, Lakhtakia A (2013) Electromagnetic surface waves: a modern perspective. Elsevier, p 314

  11. Hedayati MK, Faupel F, Elbahri M (2014) Review of plasmonic nanocomposite metamaterial absorber. Materials 7(2):1221–1248

    Article  Google Scholar 

  12. Ok JG, Youn HS, Kwak MK, Lee K-T, Shin YJ, Guo LJ, Greenwald A, Liu Y (2012) Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters. Appl Phys Lett 101(22):223102

    Article  Google Scholar 

  13. Preiner MJ, Shimizu KT, White JS, Melosh NA (2008) Efficient optical coupling into metal-insulator-metal plasmon modes with subwavelength diffraction gratings. Appl Phys Lett 92(11):113109

    Article  Google Scholar 

  14. Puscasu I, Schaich WL (2008) Narrow-band, tunable infrared emission from arrays of microstrip patches. Appl Phys Lett 92(23):233102

    Article  Google Scholar 

  15. Cheng C-W, Abbas MN, Chang Z-C, Shih MH, Wang C-M, Wu MC, Chang Y-C (2011) Angle-independent plasmonic infrared band-stop reflective filter based on the Ag/SiO2/Ag T-shaped array. Opt Lett 36(8):1440–1442

    Article  CAS  Google Scholar 

  16. Le KQ, Bai J (2015) Enhanced absorption efficiency of ultrathin metamaterial solar absorbers by plasmonic Fano resonance. JOSA B 32(4):595–600

    Article  CAS  Google Scholar 

  17. Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408(3):131–314

    Article  CAS  Google Scholar 

  18. Pitarke JM, Silkin VM, Chulkov EV, Echenique PM (2006) Theory of surface plasmons and surface-plasmon polaritons. Rep Prog Phys 70(1):1

    Article  Google Scholar 

  19. Zheng HY, Jin XR, Park JW, Lu YH, Rhee JY, Jang WH, Cheong H, Lee YP (2012) Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance. Opt Express 20(21):24002–24009

    Article  CAS  Google Scholar 

  20. Hedayati MK, Faupel F, Elbahri M (2014) Review of plasmonic nanocomposite metamaterial absorber. Materials 7:1221–1248

    Article  Google Scholar 

  21. Li W, Valentine J (2014) Metamaterial perfect absorber based hot electron photodetection. Nano Lett 14:3510–3514

    Article  CAS  Google Scholar 

  22. Vora A, Gwamuri J, Pala N, Kulkarni A, Pearce JM, Guney DO (2014) Exchanging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics. Sci Rep 4:4901

    Article  CAS  Google Scholar 

  23. Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M (2010) High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96(25):251104

    Article  Google Scholar 

  24. Le KQ (2014) Enhanced plasmonic Brewster transmission through metascreens by tapered slits. J Appl Phys 115(3):033110

    Article  Google Scholar 

  25. Mattiucci N, Bloemer MJ, Aközbek N, D’Aguanno G (2013) Impedance matched thin metamaterials make metals absorbing. Sci Rep 3

  26. Argyropoulos C, Le KQ, Mattiucci N, D’Aguanno G, Alu A (2013) Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces. Phys Rev B87(20):205112

    Article  Google Scholar 

  27. Le KQ, Argyropoulos C, Alù A (2012) Plasmonic Brewster transmission in photonic gratings and crystals. Proc SPIE 8423:842313

    Article  Google Scholar 

  28. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  CAS  Google Scholar 

  29. Koenig SP, Boddeti NG, Dunn ML, Bunch JS (2011) Ultrastrong adhesion of graphene membranes. Nat Nanotechnol 6(9):543–546

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author, Masih Ghasemi, is greatly thankful of Dr. Linus and Mr. Ding from CST division in Malaysia for their great consultancy and help in accomplishing this work. Furthermore, the author, IS Amiri, would like to acknowledge the grant number LRGS(2015)NGOD/UM/KPT, GA010-2014 (ulung), and RU007/2015 from the University of Malaya (UM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Amiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, H., Ghasemi, M., Amiri, I.S. et al. Gold Cone Metasurface MIC Sensor with Monolayer of Graphene and Multilayer of Graphite. Plasmonics 12, 497–508 (2017). https://doi.org/10.1007/s11468-016-0290-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0290-6

Keywords

Navigation