Skip to main content
Log in

Tunability of Multipolar Plasmon Resonances and Fano Resonances in Bimetallic Nanoshells

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We study the multipolar surface plasmon modes and its link to Fano resonances in bimetallic nanoparticles. General expressions for the multipolar surface plasmon frequencies and damping rates are analytically derived by long-wave approximation. The results are in agreement with that from plasmon hybridization model for nanoshell system. Numerical results show that the surface plasmon resonances and damping rates for Au/Ag and Ag/Au nanoshells exhibit quite different behavior with the increase of shell thickness. In addition, both the near-field diagram and the far-field quantity are theoretically investigated. Fano resonances of scattering efficiency by Ag/Au core-shell nanoparticles occur due to the dipole-dipole coupling. The asymmetry of Fano profiles can be tuned by adjusting the size ratio of the core and the shell. Our results may found some potential applications in optical devices and biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  2. Maier SA. Plasmonics: fundamentals and applications. Springer Science & Business Media, 2007.

  3. Zhang J, Zhang L (2012) Nanostructures for surface plasmons. Adv Opt Photonics 4:157–321

    Article  Google Scholar 

  4. Kolwas K, Derkachova A, Shopa M (2009) Size characteristics of surface plasmons and their manifestation in scattering properties of metal particles. J Quant Spectrosc Ra 110:1490–1501

    Article  CAS  Google Scholar 

  5. Wu T, Yang S, Tan W, Li X (2016) Tunable localized hybrid plasmon modes and Fano resonances in Au core-semishell. Plasmonics 11:1351–1359

    Article  CAS  Google Scholar 

  6. Bakhti S, Destouches N, Tishchenko AV (2015) Singular representation of plasmon resonance modes to optimize the near-and far-field properties of metal nanoparticles. Plasmonics 10:1391–1399

    Article  CAS  Google Scholar 

  7. Tribelsky MI, Luk'yanchuk BS (2006) Anomalous light scattering by small particles. Phys Rev Lett 97:263902

    Article  Google Scholar 

  8. Qiu C, Gao L, Joannopoulos JD, Soljačić M (2010) Light scattering from anisotropic particles: propagation, localization, and nonlinearity. Laser Photon Rev 4:268–282

    Article  CAS  Google Scholar 

  9. Hu Y, Noelck SJ, Drezek RA (2010) Symmetry breaking in gold-silica-gold multilayer nanoshells. ACS Nano 4:1521–1528

    Article  CAS  Google Scholar 

  10. Bardhan R, Grady NK, Ali T, Halas NJ (2010) Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties. ACS Nano 4:6169–6179

    Article  CAS  Google Scholar 

  11. Yin YD, Gao L, Qiu CW (2011) Electromagnetic theory of tunable SERS manipulated with spherical anisotropy in coated nanoparticles. J Phys Chem Lett C 115:8893–8899

    Article  CAS  Google Scholar 

  12. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  CAS  Google Scholar 

  13. Prodan E, Nordlander P (2004) Plasmon hybridization in spherical nanoparticles. J Chem Phys 120:5444–5454

    Article  CAS  Google Scholar 

  14. Teperik T, Popov V, de Abajo FG (2004) Radiative decay of plasmons in a metallic nanoshell. Phys Rev B 69:155402

    Article  Google Scholar 

  15. Hodak JH, Henglein A, Giersig M, Hartland GV (2000) Laser-induced inter-diffusion in AuAg core- shell nanoparticles. J Phys Chem B 104:11708–11718

    Article  CAS  Google Scholar 

  16. Lee AF, Baddeley CJ, Hardacre C, Ormerod RM, Lambert RM, Schmid G et al (1995) Structural and catalytic properties of novel Au/Pd bimetallic colloid particles: Exafs, Xrd, and acetylene coupling. J Phys Chem 99:6096–6102

    Article  CAS  Google Scholar 

  17. Kumar GVP, Shruthi S, Vibha B, Reddy BAA, Kundu TK, Narayana C (2007) Hot spots in Ag core- Au shell nanoparticles potent for surface-enhanced Raman scattering studies of biomolecules. J Phys Chem C 111:4388–4392

    Article  CAS  Google Scholar 

  18. Otanicar TP, DeJarnette D, Hewakuruppu Y, Taylor RA (2016) Filtering light with nanoparticles: a review of optically selective particles and applications. Adv Opt Photonics 8:541

    Article  Google Scholar 

  19. Zhu J, Li J-J, Zhao J-W (2014) The effect of dielectric coating on the local electric field enhancement of Au-Ag core-shell nanoparticles. Plasmonics 10:1–8

    Article  Google Scholar 

  20. Lu L, Wang H, Zhou Y, Xi S, Zhang H, Hu J, et al. (2002) Seed-mediated growth of large, monodisperse core-shell gold-silver nanoparticles with Ag-like optical properties. Chem Commun (Camb) 144–145

  21. Rivas L, Sanchez-Cortes S, Garcia-Ramos JV, Morcillo G (2000) Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity. Langmuir 16:9722–9728

    Article  CAS  Google Scholar 

  22. Hao E, Li SY, Bailey RC, Zou SL, Schatz GC, Hupp JT (2004) Optical properties of metal nanoshells. J Phys Chem B 108:1224–1229

    Article  CAS  Google Scholar 

  23. Wu DJ, Xu XD, Liu XJ (2008) Electric field enhancement in bimetallic gold and silver nanoshells. Solid State Commun 148:163–167

    Article  CAS  Google Scholar 

  24. Stoll T, Maioli P, Crut A, Burgin J, Langot P, Pellarin M et al (2015) Ultrafast acoustic vibrations of bimetallic nanoparticles. J Phys Chem Lett C 119:1591–1599

    Article  CAS  Google Scholar 

  25. Ma P, Gao D, Ni Y, Gao L (2015) Enhancement of optical nonlinearity by core-shell bimetallic nanostructures. Plasmonics 11:183–187

    Article  Google Scholar 

  26. Tribelsky MI, Flach S, Miroshnichenko AE, Gorbach AV, Kivshar YS (2008) Light scattering by a finite obstacle and Fano resonances. Phys Rev Lett 100:043903

    Article  Google Scholar 

  27. Hao F, Sonnefraud Y, Van Dorpe P, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8:3983–3988

    Article  CAS  Google Scholar 

  28. Zhang J, Zayats A (2013) Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures. Opt Express 21:8426–8436

    Article  Google Scholar 

  29. Qian J, Chen Z, Wang W, Li Y, Xu J, Sun Q (2014) Dual symmetry breaking in gold-silica-gold multilayer nanoshells. Plasmonics 9:1361–1369

    Article  CAS  Google Scholar 

  30. Chen H, Liu S, Zi J, Lin Z (2015) Fano resonance-induced negative optical scattering force on plasmonic nanoparticles. ACS Nano 9:1926–1935

    Article  CAS  Google Scholar 

  31. Liu W, Miroshnichenko AE, Oulton RF, Neshev DN, Hess O, Kivshar YS (2013) Scattering of core-shell nanowires with the interference of electric and magnetic resonances. Opt Lett 38:2621–2624

    Article  Google Scholar 

  32. Li Z, Zhang S, Tong L, Wang P, Dong B, Xu H (2014) Ultrasensitive size-selection of plasmonic nanoparticles by Fano interference optical force. ACS Nano 8:701–708

    Article  CAS  Google Scholar 

  33. Li BQ, Liu C (2011) Long-wave approximation for hybridization modeling of local surface plasmonic resonance in nanoshells. Opt Lett 36:247–249

    Article  CAS  Google Scholar 

  34. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1:641–648

    Article  CAS  Google Scholar 

  35. Derkachova A, Kolwas K (2007) Size dependence of multipolar plasmon resonance frequencies and damping rates in simple metal spherical nanoparticles. Eur Phys J-Spec Top 144:93–99

    Article  Google Scholar 

  36. Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B 16:1824–1832

    Article  CAS  Google Scholar 

  37. van de Hulst H.C. (1981) Light Scattering by Small Particles.

  38. Steinbrück A, Csáki A, Festag G, Fritzsche W (2006) Preparation and optical characterization of core–shell bimetal nanoparticles. Plasmonics 1:79–85

    Article  Google Scholar 

  39. Zhu J (2009) Surface plasmon resonance from bimetallic interface in Au–Ag core–shell structure nanowires. Nanoscale Res Lett 4:977

    Article  CAS  Google Scholar 

  40. Kottmann JP, Martin OJF, Smith DR, Schultz S (2000) Field polarization and polarization charge distributions in plasmon resonant nanoparticles. New J Phys 2:27–27

    Article  Google Scholar 

  41. Jian Z, Jian-jun L, Jun-wu Z (2011) Tuning the dipolar plasmon hybridization of multishell metal-dielectric nanostructure: gold nanosphere in a gold nanoshell. Plasmonics 6:527–534

    Article  Google Scholar 

  42. Bachelier G, Russier-Antoine I, Benichou E, Jonin C, Del Fatti N, Vallee F et al (2008) Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles. Phys Rev Lett 101:197401

    Article  CAS  Google Scholar 

  43. Penarodriguez O, Pal U (2011) Au@Ag core–shell nanoparticles: efficient all-plasmonic Fano-resonance generators. Nanoscale 3:3609–3612

    Article  CAS  Google Scholar 

  44. Miroshnichenko AE (2010) Off-resonance field enhancement by spherical nanoshells. Phys Rev A 81:053818

    Article  Google Scholar 

  45. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866–1878

    Article  CAS  Google Scholar 

  46. Galli M, Portalupi SL, Belotti M, Andreani LC, O’Faolain L, Krauss TF (2009) Light scattering and Fano resonances in high-Q photonic crystal nanocavities. Appl Phys Lett 94:071101

    Article  Google Scholar 

  47. Qiu CW, Gao L (2008) Resonant light scattering by small coated nonmagnetic spheres: magnetic resonances, negative refraction, and prediction. J Opt Soc Am B 25:1728–1737

    Article  CAS  Google Scholar 

  48. Albaladejo S, Gómez-Medina R, Froufe-Pérez LS, Marinchio H, Carminati R, Torrado J et al (2010) Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle. Opt Express 18:3556–3567

    Article  CAS  Google Scholar 

  49. Alù A, Engheta N (2010) How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem? J Nanophotonics 4:041590

    Article  Google Scholar 

  50. Garcia-Camara B, Alcaraz de la Osa R, Saiz JM, Gonzalez F, Moreno F (2011) Directionality in scattering by nanoparticles: Kerker’s null-scattering conditions revisited. Opt Lett 36:728–730

    Article  CAS  Google Scholar 

  51. McMahon JM, Gray SK, Schatz GC (2009) Nonlocal optical response of metal nanostructures with arbitrary shape. Phys Rev Lett 103:097403

    Article  Google Scholar 

  52. Raza S, Toscano G, Jauho A-P, Wubs M, Mortensen NA (2011) Unusual resonances in nanoplasmonic structures due to nonlocal response. Phys Rev B 84:121412

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11374223, No. 11504252), the National Science of Jiangsu Province (Grant No. BK20161210), the Natural Science Foundation for the Youth of Jiangsu Province (No. BK20150306), the Qing Lan project, “333” project (Grant No. BRA2015353), the Natural Science Foundation for Colleges and Universities in Jiangsu Province of China (No. 15KJB140008), and the PAPD of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongliang Gao or Lei Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Gao, D. & Gao, L. Tunability of Multipolar Plasmon Resonances and Fano Resonances in Bimetallic Nanoshells. Plasmonics 13, 623–630 (2018). https://doi.org/10.1007/s11468-017-0553-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0553-x

Keywords

Navigation