Skip to main content
Log in

Modifying and Fine Controlling of Silver Nanoparticle Nucleation Sites and SERS Performance by Double Silicon Etching Process

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Different forms of modified and well-controlled plasmonic silver nanoparticles (AgNPs) were synthesized by silver ion reduction process of porous silicon (PS). Fine control of PS surface morphology was accomplished by employing two etching processes: light-induced etching (LIE) and photo electrochemical etching (PECE). The idea was to prepare excellent and reproducible surface-enhanced Raman scattering (SERS) substrates with high enhancement performance. PS surface modification was employed to create efficient and nearly uniformly distributed AgNP hotspot regions with very high specific surface areas. Reproducibility deviation of no more than 5% and enhancement factor of 1.2 × 1014 were obtained by SERS measurements at very low, rhodamine 6G (R6G) dye, concentration 10−15 M. The PS morphology SERS substrate was well discussed and analyzed using field emission scanning electron microscopy (FE-SEM), X-ray diffraction spectroscopy (XRD), and Raman measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhang D, Xiao SJ, Zheng LL, Lia YF, Huang CZ (2014) Mater Chem B

  2. Fleischmann M, Hendra PJ, McQuillan A (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  3. Li Q-l, Li B-w, Wang Y-q (2013) Surface-enhanced Raman scattering microfluidic sensor. RSC Adv 3:13015–13026

    Article  CAS  Google Scholar 

  4. Sánchez-Iglesias A, Aldeanueva-Potel P, Ni W, Pérez-Juste J, Pastoriza-Santos I, Alvarez-Puebla RA et al (2010) Chemical seeded growth of ag nanoparticle arrays and their application as reproducible SERS substrates. Nano Today 5:21–27

    Article  CAS  Google Scholar 

  5. Santos A, Kumeria T (2015) Electrochemical etching methods for producing porous silicon. In Electrochemically engineered nanoporous materials, ed. Springer, pp. 1–36

  6. Al-Khazraji KK, Rasheeda BG, Ibrahem MA, Mohammed AF (2012) Effect of laser-induced etching process on porous structures. Procedia Eng 38:1381–1390

    Article  CAS  Google Scholar 

  7. Soni R, Bassam G, Abbi S (2003) Laser-controlled photoluminescence characteristics of silicon nanocrystallites produced by laser-induced etching. Appl Surf Sci 214:151–160

    Article  CAS  Google Scholar 

  8. Yamanishi M, Suemune I (1983) Quantum mechanical size effect modulation light sources–a new field effect semiconductor laser or light emitting device. Jpn J Appl Phys 22:L22

    Article  Google Scholar 

  9. Kolasinski KW, Mills D, Nahidi M (2006) Laser assisted and wet chemical etching of silicon nanostructures. J Vac Sci Technol Vacuums Surf Films 24:1474

    Article  CAS  Google Scholar 

  10. Kowalik I, Guziewicz E, Kopalko K, Yatsunenko S, Wójcik-Głodowska A, Godlewski M et al (2009) Structural and optical properties of low-temperature ZnO films grown by atomic layer deposition with diethylzinc and water precursors. J Cryst Growth 311:1096–1101

    Article  CAS  Google Scholar 

  11. Alwan AM, Hayder AJ, Jabbar AA (2015) Study on morphological and structural properties of silver plating on laser etched silicon. Surf Coat Technol 283:22–28

    Article  CAS  Google Scholar 

  12. Stewart MP, Buriak JM (2000) Chemical and biological applications of porous silicon technology. Adv Mater 12:859–869

    Article  CAS  Google Scholar 

  13. Menna P, Di Francia G, La Ferrara V (1995) Porous silicon in solar cells: a review and a description of its application as an AR coating. Sol Energy Mater Sol Cells 37:13–24

    Article  CAS  Google Scholar 

  14. Sun X, Wang N, Li H (2013) Deep etched porous Si decorated with au nanoparticles for surface-enhanced Raman spectroscopy (SERS). Appl Surf Sci 284:549–555

    Article  CAS  Google Scholar 

  15. Chan S, Kwon S, Koo TW, Lee LP, Berlin AA (2003) Surface-enhanced Raman scattering of small molecules from silver-coated silicon Nanopores. Adv Mater 15:1595–1598

    Article  CAS  Google Scholar 

  16. Panarin AY, Terekhov S, Kholostov K, Bondarenko V (2010) SERS-active substrates based on n-type porous silicon. Appl Surf Sci 256:6969–6976

    Article  CAS  Google Scholar 

  17. Adawyia JH, Alwan MA, Allaa AJ (2016) Optimizing of porous silicon morphology for synthesis of silver nanoparticles. Microporous Mesoporous Mater 227:152–160

    Article  CAS  Google Scholar 

  18. Huang Z, Fang H, Zhu J (2007) Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv Mater 19:744–748

    Article  CAS  Google Scholar 

  19. Tsuboi T, Sakka T, Ogata YH (1998) Metal deposition into a porous silicon layer by immersion plating: influence of halogen ions. J Appl Phys 83:4501–4506

    Article  CAS  Google Scholar 

  20. Antunez EE et al (2014) Controlled morphology and optical properties of n-type porous silicon: effect of magnetic field and electrode-assisted LEF. Nanoscale Res Lett 9.1:512

    Article  CAS  Google Scholar 

  21. Bisi O, Ossicini S, Pavesi L (2000) Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf Sci Rep 38:1–126

    Article  CAS  Google Scholar 

  22. Sze SM (2008) Semiconductor devices: physics and technology: John Wiley & Sons

    Google Scholar 

  23. Ben-Chorin M, Möller F, Koch F (1994) Nonlinear electrical transport in porous silicon. Phys Rev B 49:2981

    Article  CAS  Google Scholar 

  24. Peng C, Hirschman K, Fauchet P (1996) Carrier transport in porous silicon light-emitting devices. J Appl Phys 80:295–300

    Article  CAS  Google Scholar 

  25. Zheng H (2011) Molecular dynamic simulation of thin film growth stress evolution

  26. Novara C, Dalla Marta S, Virga A, Lamberti A, Angelini A, Chiadò A et al (2016) SERS-active ag nanoparticles on porous silicon and PDMS substrates: a comparative study of uniformity and Raman efficiency. J Phys Chem C 120:16946–16953

    Article  CAS  Google Scholar 

  27. Zhang C, Jiang SZ, Yang C, Li CH, Huo YY, Liu XY et al (2016) Gold@ silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS. Scientific reports, vol. 6

  28. Le Ru E, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111:13794–13803

    Article  CAS  Google Scholar 

  29. Bykkam S, Ahmadipour M, Narisngam S, Kalagadda VR, Chidurala SC (2015) Extensive studies on X-ray diffraction of green synthesized silver nanoparticles. Adv Nanopart 4:1

    Article  CAS  Google Scholar 

  30. Harraz FA, Ismail AA, Bouzid H, Al-Sayari S, Al-Hajry A, Al-Assiri M (2015) Surface-enhanced Raman scattering (SERS)-active substrates from silver plated-porous silicon for detection of crystal violet. Appl Surf Sci 331:241–247

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allaa A. Jabbar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabbar, A.A., Alwan, A.M. & Haider, A.J. Modifying and Fine Controlling of Silver Nanoparticle Nucleation Sites and SERS Performance by Double Silicon Etching Process. Plasmonics 13, 1171–1182 (2018). https://doi.org/10.1007/s11468-017-0618-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0618-x

Keywords

Navigation