Skip to main content
Log in

Boosted UV Sensitivity of Er-Doped In2O3 Thin Films Using Plasmonic Ag Nanoparticle-Based Surface Texturing

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Ag nanoparticles (NPs) were deposited on the sol-gel-processed Erbium-doped Indium Oxide (In2O3:Er) thin films (TFs) using thermal evaporation cum glancing angle deposition technique for the first time. The grazing incidence X-ray diffraction analysis confirms the presence of a face-centered cubic structure of Ag NPs and monoclinic crystal structure of Ag3O4. The presence of Ag NPs on In2O3:Er TFs reduced the photoluminescence emission intensity. Au/In2O3:Er/Si and Au/In2O3:Er/Ag NPs/In2O3:Er/Si (plasmonic) Schottky contact-based detectors were fabricated. Presence of Ag NPs on the In2O3:Er TFs enhanced the photoconduction for the plasmonic detector. The photoresponsivity of the plasmonic device was ∼ 8.7 times greater than In2O3:Er TF-based device for 380 nm wavelength at an applied bias of − 6.6 V. The plasmonic device showed a maximum internal gain of ~ 3181 at 380 nm wavelength. The plasmonic device possessed higher detectivity and lower noise equivalent power as compared to In2O3:Er TF in the ultraviolet (UV) region. The plasmonic device exhibited excellent temporal response with rise and fall time of ~ 0.25 and ~ 0.12 s, respectively. The admirable characteristics of the simple plasmonic device structure can commercially emerge out as UV detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References:

  1. Barth JV, Costantini G, Kern K (2005) Engineering atomic and molecular nanostructures at surfaces. Nature 437:671–679. https://doi.org/10.1038/nature04166

  2. Dasgupta NP, Sun J, Liu C, Brittman S, Andrews SC, Lim J, Gao H, Yan R, Yang P (2014) 25th anniversary article: semiconductor nanowires—synthesis, characterization, and applications. Adv Mater 26(14):2137–2184. https://doi.org/10.1002/adma.201305929

    Article  CAS  Google Scholar 

  3. Langley D, Giusti G, Mayousse C, Celle C, Bellet D, Simonato JP (2013) Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24(45):452001. https://doi.org/10.1088/0957-4484/24/45/452001

    Article  Google Scholar 

  4. Zhang N, Han C, Xu Y et al (2016) Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat Photonics 10(7):473–483. https://doi.org/10.1038/NPHOTON.2016.76

    Article  Google Scholar 

  5. Zhao W, Wang S, Liu B, Verzhbitskiy I, Li S, Giustiniano F, Kozawa D, Loh KP, Matsuda K, Okamoto K, Oulton RF, Eda G (2016) Exciton–plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with ag nanoparticles. Adv Mater 28(14):2709–2715. https://doi.org/10.1002/adma.201504478

    Article  CAS  Google Scholar 

  6. Xiao XH, Ren F, Zhou XD, Peng TC, Wu W, Peng XN, Yu XF, Jiang CZ (2010) Surface plasmon-enhanced light emission using silver nanoparticles embedded in ZnO. Appl Phys Lett 97(7):071909. https://doi.org/10.1063/1.3480417

    Article  Google Scholar 

  7. Sobhani A, Lauchner A, Najmaei S, Ayala-Orozco C, Wen F, Lou J, Halas NJ (2014) Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells. Appl Phys Lett 104(3):031112. https://doi.org/10.1063/1.4862745

    Article  Google Scholar 

  8. Ho W, Sue R, Lin J, Syu H, Lin C (2016) Optical and electrical performance of MOS-structure silicon solar cells with antireflective transparent ITO and plasmonic indium nanoparticles under applied bias voltage. Materials 9(8):682. https://doi.org/10.3390/ma9080682

    Article  Google Scholar 

  9. Linic S, Aslam U, Boerigter C, Morabito M (2015) Photochemical transformations on plasmonic metal nanoparticles. Nat. Materials 14(6):567–576. https://doi.org/10.1038/NMAT4281

    Article  CAS  Google Scholar 

  10. Marimuthu A, Zhang J, Linic S (2013) Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339(6127):1590–1593. https://doi.org/10.1126/science.1231631

    Article  CAS  Google Scholar 

  11. Zhang JZ, Noguez C (2008) Plasmonic optical properties and applications of metal nanostructures. Plasmonics 3(4):127–150. https://doi.org/10.1007/s11468-008-9066-y

    Article  CAS  Google Scholar 

  12. Stuart HR, Hall DG (1998) Island size effects in nanoparticle-enhanced photodetectors. Appl Phys Lett 73(26):3815–3817. https://doi.org/10.1063/1.122903

    Article  CAS  Google Scholar 

  13. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Materials 9(10):205–213. https://doi.org/10.1038/nmat2866

    Article  CAS  Google Scholar 

  14. Li D, Sun X, Song H, Li Z, Chen Y, Jiang H, Miao G (2012) Realization of a high-performance GaN UV detector by nanoplasmonic enhancement. Adv Mater 24(6):845–849. https://doi.org/10.1002/adma.201102585

    Article  CAS  Google Scholar 

  15. Arshad MS, Trafela S, Rozman KZ, Kovac J, Djinovic P, Pintar A (2017) Determination of Schottky barrier height and enhanced photoelectron generation in novel conversion applications. J Mater Chem C 5(40):10509–10516. https://doi.org/10.1039/c7tc02633a

    Article  CAS  Google Scholar 

  16. Liu JS, Shan CX, Li BH, Zhang ZZ, Yang CL, Shen DZ, Fan XW (2010) High responsivity ultraviolet photodetector realized via a carrier-trapping process. Appl Phys Lett 97(25):251102. https://doi.org/10.1063/1.3527974

    Article  Google Scholar 

  17. Gogurla N, Sinha AK, Santra S, Manna S, Ray SK (2014) Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature. Sci Rep 4(1):6483. https://doi.org/10.1038/srep06483

    Article  CAS  Google Scholar 

  18. Matheu P, Lim SH, Derkacs D, McPheeters C, Yu ET (2008) Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices. Appl Phys Lett 93(11):113108. https://doi.org/10.1063/1.2957980

    Article  Google Scholar 

  19. Choudhuri B, Mondal A, Ganguly A, Saha AK, Chattopadhyay KK (2015) Glancing angle synthesized indium nanoparticles covered TiO2 thin film and its structural, optoelectronic properties. Appl Phys A Mater Sci Process 118(1):373–379. https://doi.org/10.1007/s00339-014-8744-1

    Article  CAS  Google Scholar 

  20. Choudhuri B, Mondal A, Dhar JC, Singh NK, Goswami T, Chattopadhyay KK (2013) Enhanced photocurrent from generated photothermal heat in indium nanoparticles embedded TiO2 film. Appl Phys Lett 102(23):233108. https://doi.org/10.1063/1.4811360

    Article  Google Scholar 

  21. Mondal A, Ganguly A, Das A, Choudhuri B, Yadav RK (2015) The Ag nanoparticles/TiO2 thin film device for enhanced photoconduction and role of traps. Plasmonics 10(3):667–673. https://doi.org/10.1007/s11468-014-9852-7

    Article  CAS  Google Scholar 

  22. Liu Y, Wei S, Gao W (2015) Ag/ZnO heterostructures and their photocatalytic activity under visible light: effect of reducing medium. J Hazard Mater 287:59–68. https://doi.org/10.1016/j.jhazmat.2014.12.045

    Article  CAS  Google Scholar 

  23. Mehta BR, Singh VN (2005) Structural, electrical and gas-sensing properties of In2O3:Ag composite nanoparticle layers. Pramana J Phys 65(5):949–958. https://doi.org/10.1007/BF02704096

    Article  CAS  Google Scholar 

  24. Ghosh A, Dwivedi SMMD, Chakrabartty S, Henini M, Mondal A (2018) Detailed investigation of defect states in Erbium doped In2O3 thin films. Mater Res Bull 99:211–218. https://doi.org/10.1016/j.materresbull.2017.11.020

    Article  CAS  Google Scholar 

  25. Ghosh A, Mondal A, Das A, Chattopadhyay S, Chattopadhyay KK (2017) Removal of oxygen related defects from chemically synthesized In2O3 thin film doped with Er by spin-on technique. J Alloys Compd 695:1260–1265. https://doi.org/10.1016/j.jallcom.2016.10.254

    Article  CAS  Google Scholar 

  26. Barranco A, Borras A, Gonzalez-Elipe AR, Palmero A (2016) Perspectives on oblique angle deposition of thin films: from fundamentals to devices. Prog Mater Sci 76:59–153. https://doi.org/10.1016/j.pmatsci.2015.06.003

    Article  CAS  Google Scholar 

  27. Zhou Q, Li Z, Ni J, Zhang Z (2011) A simple model to describe the rule of glancing angle deposition. Mat Transactions 52(3):469–473. https://doi.org/10.2320/matertrans.M2010342

    Article  CAS  Google Scholar 

  28. Zhou Q, Li Z, Yang Y, Zhang Z (2008) Arrays of aligned, single crystalline silver nanorods for trace amount detection. J Phys D Appl Phys 41(15):152007. https://doi.org/10.1088/0022-3727/41/15/152007

    Article  Google Scholar 

  29. Xie W, Li Y, Sun W, Huang J, Xie H, Zhao X (2010) Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability. J Photochem Photobiol A Chem 216(2-3):149–155. https://doi.org/10.1016/j.jphotochem.2010.06.032

    Article  CAS  Google Scholar 

  30. Kim WJ, Pradhan D, Sohn Y (2013) Fundamental nature and CO oxidation activities of indium oxide nanostructures: 1D-wires, 2D-plates, and 3D-cubes and donuts. J Mater Chem A 1(35):10193–10202. https://doi.org/10.1039/c3ta12312j

    Article  CAS  Google Scholar 

  31. Ganguly A, Mondal A, Dhar JC, Singh NK, Choudhury S (2013) Enhanced visible light absorption by TiO2 film patterned with Ag nanoparticles arrays. Phys E 54:326–330. https://doi.org/10.1016/j.physe.2013.07.019

    Article  CAS  Google Scholar 

  32. Chun HJ, Choi YS, Bae SY, Park J (2005) Bicrystalline indium oxide nanobelts. Appl Phys A Mater Sci Process 81(3):539–542. https://doi.org/10.1007/s00339-004-2898-1

    Article  CAS  Google Scholar 

  33. Warren SC, Thimsen E (2012) Plasmonic solar water splitting. Energy & Environ Sci 5(1):5133–5146. https://doi.org/10.1039/c1ee02875h

    Article  CAS  Google Scholar 

  34. Chen Z, Fang L, Dong W, Zheng F, Shen M, Wang J (2014) Inverse opal structured Ag/TiO2 plasmonic photocatalyst prepared by pulsed current deposition and its enhanced visible light photocatalytic activity. J Mater Chem A 2(3):824–832. https://doi.org/10.1039/c3ta13985a

    Article  CAS  Google Scholar 

  35. Soci C, Zhang A, Xiang B, Dayeh SA, Aplin DPR, Park J, Bao XY, Lo YH, Wang D (2007) ZnO nanowire UV photodetectors with high internal gain. Nano Lett 7(4):1003–1009. https://doi.org/10.1021/nl070111x

    Article  CAS  Google Scholar 

  36. Wang H, Lim JW, Mota FM, Jang YJ, Yoon M, Kim H, Hu W, Noh YY, Kim DH (2017) Plasmon-mediated wavelength-selective enhanced photoresponse in polymer photodetectors. J Mat Chem C 5(2):399–407. https://doi.org/10.1039/c6tc04662b

    Article  CAS  Google Scholar 

  37. Lee W, Hon M (2011) An ultraviolet photo-detector based on TiO2/water solid-liquid heterojunction. Appl Phys Lett 99(25):251102. https://doi.org/10.1063/1.3671076

    Article  Google Scholar 

  38. Zhang M, Zhang D, Jing F, Liu G, Lv K, Zhou J, Ruan SP (2015) Fast decay time and low dark current mechanism in TiO2 ultraviolet detector. IEEE Photon Tech Lett 27(1):54–57. https://doi.org/10.1109/LPT.2014.2360581

    Article  CAS  Google Scholar 

  39. Shao D, Yu M, Sun H, Xin G, Lian J, Sawyer S (2014) High-performance ultraviolet photodetector based on organic−inorganic hybrid structure. ACS Appl Mater Interfaces 6(16):14690–146946. https://doi.org/10.1021/am504090e

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge C.S.I.R. (03(1355)/16/EMR-II), N.I.T. Durgapur, and the govt of India for financial support. The authors are also thankful to Centre of Excellence (COE), N.I.T. Durgapur and Nanofabrication laboratory, I.I.T. Bombay for providing FESEM facility and PL measurement facility, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniruddha Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Dhar Dwivedi, S.M.M., Ghadi, H. et al. Boosted UV Sensitivity of Er-Doped In2O3 Thin Films Using Plasmonic Ag Nanoparticle-Based Surface Texturing. Plasmonics 13, 1105–1113 (2018). https://doi.org/10.1007/s11468-017-0679-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0679-x

Keywords

Navigation