Skip to main content

Advertisement

Log in

Optimization of 1D Plasmonic Grating of Nanostructured Devices for the Investigation of Plasmonic Bandgap

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The present work investigates the effect of geometrical parameters of 1D nanograting on surface plasmon resonance (SPR) and plasmonic bandgap (PBG). The use of plasmonic grating device in various electronic devices is based on correct value of bandgap energy. For this purpose, various nanograting structures having regular periodic ridges in 1D has been modeled in the form of a gold film on glass substrate using finite element analysis in RFRF Module of COMSOL (Multiphysics) 5.3a licensed version. In the designed structures, firstly, the periodicity of the grating varied while keeping the slit width and film thickness constant. Furthermore, the thickness of the grating also varied while the periodicity and slit width is kept constant and transmitted mode for each structure is studied to find the suitable value of film thickness for optimizing the device. At the end, the slit width varied while keeping the periodicity and film thickness constant. Due to increase in slit width, the bandgap energy increases until slit width equals to nearly half of periodicity after this bandgap energy decreases and associated with the sinusoidal behavior of the device which support fundamental plasmonic mode. The increase in film thickness results a linear increase in bandgap energy as long as the film thickness is comparable to the skin depth of gold and plasmonic bandgap energy is high for smaller values of periodicity and decreases with increasing periodicity. Due to the ability to control the optical properties, the PBG is expected to have a major impact on technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wood RW (1902) XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. London Edinburgh Dublin Philosophical Magazine J Sci 4(21):396–402

    Article  Google Scholar 

  2. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330(3):377–445

    Article  Google Scholar 

  3. Yablonovitch E (1993) Photonic band-gap structures. JOSA B 10(2):283–295

    Article  CAS  Google Scholar 

  4. Scalora M, Dowling JP, Bowden CM, Bloemer MJ (1994) Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials. Phys Rev Lett 73(10):1368–1371

    Article  CAS  Google Scholar 

  5. John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58(23):2486–2489

    Article  CAS  Google Scholar 

  6. Alu A, Engheta N (2008) Plasmonic and metamaterial cloaking: physical mechanisms and potentials. J Opt A Pure Appl Opt 10(9):093002

    Article  Google Scholar 

  7. Lim S et al (2007) Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J Appl Phys 101(10):104309

    Article  Google Scholar 

  8. Kwon MK, Kim JY, Kim BH, Park IK, Cho CY, Byeon CC, Park SJ (2008) Surface-plasmon-enhanced light-emitting diodes. Adv Mater 20(7):1253–1257

    Article  CAS  Google Scholar 

  9. Ditlbacher H et al (2005) Silver nanowires as surface plasmon resonators. Phys Rev Lett 95(25):257403

    Article  Google Scholar 

  10. Atwater HA, Maier S, Polman A, Dionne JA, Sweatlock L (2005) The new “p–n junction”: plasmonics enables photonic access to the nanoworld. MRS Bull 30(5):385–389

    Article  CAS  Google Scholar 

  11. Islam K, et al. (2013) Improved efficiency of thin film a-Si: H solar cells with Au nanoparticles. in Photovoltaic Specialists Conference (PVSC) IEEE 39th. 2013. IEEE

  12. Ritchie R, Arakawa E, Cowan J, Hamm R (1968) Surface-plasmon resonance effect in grating diffraction. Phys Rev Lett 21(22):1530–1533

    Article  CAS  Google Scholar 

  13. Chen Y et al (1983) One-dimensional long-range plasmonic-photonic structures. Solid State Commun 46:95–99

    Article  Google Scholar 

  14. Heitmann D, Kroo N, Schulz C, Szentirmay Z (1987) Dispersion anomalies of surface plasmons on corrugated metal-insulator interfaces. Phys Rev B 35(6):2660–2666

    Article  CAS  Google Scholar 

  15. Knoll W, Philpott MR, Swalen JD, Girlando A (1982) Surface plasmon enhanced Raman spectra of monolayer assemblies. J Chem Phys 77(5):2254–2260

    Article  CAS  Google Scholar 

  16. Nash D et al (1995) Examination of the+ 1,− 1 surface plasmon mini-gap on a gold grating. J Mod Opt 42(1):243–248

    Article  Google Scholar 

  17. Saito H, Yamamoto N (2015) Size dependence of bandgaps in a two-dimensional plasmonic crystal with a hexagonal lattice. Opt Express 23(3):2524–2540

    Article  CAS  Google Scholar 

  18. Karademir E, Balci S, Kocabas C, Aydinli A (2014) Plasmonic band gap engineering of plasmon–exciton coupling. Opt Lett 39(19):5697–5700

    Article  CAS  Google Scholar 

  19. Watanabe H, Honda M, Yamamoto N (2014) Size dependence of band-gaps in a one-dimensional plasmonic crystal. Opt Express 22(5):5155–5165

    Article  Google Scholar 

  20. Iqbal T, Afsheen S (2016) Plasmonic band gap: role of the slit width in 1D metallic grating on higher refractive index substrate. Plasmonics 11(3):885–893

    Article  CAS  Google Scholar 

  21. Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2(8):496–500

    Article  CAS  Google Scholar 

  22. Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4(5):899–903

    Article  CAS  Google Scholar 

  23. Javaid M, Iqbal T (2016) Plasmonic bandgap in 1D metallic nanostructured devices. Plasmonics 11(1):167–173

    Article  CAS  Google Scholar 

  24. Raether H (1988) Surface plasmons on smooth surfaces, in Surface plasmons on smooth and rough surfaces and on gratings, Springer. p. 4–39

  25. Raether H (1988) Springer tracts in modern physics. Vol. 111. Springer-Verlag

  26. Sambles J, Bradbery G, Yang F (1991) Optical excitation of surface plasmons: an introduction. Contemp Phys 32(3):173–183

    Article  CAS  Google Scholar 

  27. Ashcroft N and Mermin N (1976) Solid State Physics (Saunders College, Philadelphia). Google Scholar. p. 404

  28. Iqbal T, Afsheen S (2016) Coupling efficiency of surface plasmon polaritons for 1D plasmonic gratings: role of under-and over-milling. Plasmonics 11(5):1247–1256

    Article  CAS  Google Scholar 

  29. Palik ED (1984) Handbook of Optical-Constants. 1

  30. Kvítek O et al (2013) Noble metal nanostructures influence of structure and environment on their optical properties. J Nanomater 2013:111

    Article  Google Scholar 

  31. Benjamin P, Weaver C (1962) The adhesion of evaporated metal films on glass. Proc R Soc Lond A 261(1307):516–531

    Google Scholar 

  32. Ziman JM (1972) Principles of the theory of solids. Cambridge university press

  33. Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business Media

  34. Kocabas A, Senlik SS, Aydinli A (2008) Plasmonic band gap cavities on biharmonic gratings. Phys Rev B 77(19):195130

    Article  Google Scholar 

  35. Li J et al (2003) Photonic band gap from a stack of positive and negative index materials. Phys Rev Lett 90(8):083901

    Article  Google Scholar 

  36. Feng L, Lu MH, Lomakin V, Fainman Y (2008) Plasmonic photonic crystal with a complete band gap for surface plasmon polariton waves. Appl Phys Lett 93(23):231105

    Article  Google Scholar 

  37. Lu C, Hu X, Yang H, Gong Q (2013) Integrated all-optical logic discriminators based on plasmonic bandgap engineering. Sci Rep 3:2778

    Article  Google Scholar 

  38. Munir M, et al. (2018) Efficient biosensing through 1D silver nanostructured devices using plasmonic effect. Nanotechnology

  39. Kolomenski A, Kolomenskii A, Noel J, Peng S, Schuessler H (2009) Propagation length of surface plasmons in a metal film with roughness. Appl Opt 48(30):5683–5691

    Article  Google Scholar 

  40. Radko IP et al (2008) Efficiency of local surface plasmon polariton excitation on ridges. Phys Rev B 78(11):115115

    Article  Google Scholar 

  41. Rosengart E-H, Pockrand I (1977) Influence of higher harmonics of a grating on the intensity profile of the diffraction orders via surface plasmons. Opt Lett 1(6):194–195

    Article  CAS  Google Scholar 

  42. Lévêque G, Martin OJ (2006) Optimization of finite diffraction gratings for the excitation of surface plasmons. J Appl Phys 100(12):124301

    Article  Google Scholar 

  43. Iqbal T (2015) Propagation length of surface plasmon polaritons excited by a 1D plasmonic grating. Curr Appl Phys 15(11):1445–1452

    Article  Google Scholar 

  44. Iqbal T, et al. (2018) An optimal Au grating structure for light absorption in amorphous silicon thin film solar cell. Plasmonics p. 1–8

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tahir Iqbal or Muhammad Abrar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, T., Khalil, S., Ijaz, M. et al. Optimization of 1D Plasmonic Grating of Nanostructured Devices for the Investigation of Plasmonic Bandgap. Plasmonics 14, 775–783 (2019). https://doi.org/10.1007/s11468-018-0857-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0857-5

Keywords

Navigation