Skip to main content
Log in

Design and Analysis of FBG Sensor for Explosive Detection Applications

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a simple uniform fiber Bragg grating (FBG) sensor is designed, and maximum reflection of 7.1 dB at 1.55 μm is obtained. As this FBG shows a better reflection, it deserves well for the purpose of sensing and communication predominantly as they are resistant to electromagnetic radiations, light weight, low cost, firm size, and ease of handling. The proposed FBG is used for explosive sensing applications to detect explosives like trinitrotoluene (TNT), nitroglycerin, and royal demolition explosive (RDX). The different strain and temperature wavelength shifts of the explosives also analyzed and plotted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Obaton AF, Laffont G, Wang C, Allard A, Ferdinand P (2013) Tilted fibre Bragg gratings and phase sensitive-optical low coherence interferometry for refractometry and liquid level sensing. Sensors Actuators A 189:451–458

    Article  CAS  Google Scholar 

  2. Guan BO, Li J, Jin L, Ran Y (2013) Fiber Bragg gratings in optical microfibers. Opt Fiber Technol 19(6):80–93

    Article  CAS  Google Scholar 

  3. Yang Y, Liu X, Zhang X, Jin W, Yang M (2014) Gap FBG and its application in tunable narrow linewidth fibre laser. Opt Laser Technol 56:114–118

    Article  CAS  Google Scholar 

  4. Song Q, Jin T, Chi H, Tong G, Ren F, Zha X (2015) An optoelectronic oscillator using an FBG and an FBG-based Fabry–Perot filter. Opt Commun 342:141–143

    Article  CAS  Google Scholar 

  5. Li X-X, Ren W-X, Bi K-M (2015) FBG force-testing ring for bridge cable force monitoring and temperature compensation. Sensors Actuators A 223:105–113

    Article  CAS  Google Scholar 

  6. Yang HZ, Ali MM, Rajibul M (2015) Cladless few mode fiber grating sensor for simultaneous refractive index and temperature measurement. Sensors Actuators A 228:62–68

    Article  CAS  Google Scholar 

  7. Wang J, Hu B, Li W, Song G, Jiang L, Liu T (2016) Design and application of fiber Bragg grating (FBG) geophone for higher sensitivity and wider frequency range. Measurement 79:228–235

    Article  Google Scholar 

  8. Li Y, Wang Y, Wen C (2016) Temperature and strain sensing properties of the zinc coated FBG. Optik 127:6463–6469

    Article  CAS  Google Scholar 

  9. Mishra V, Lohar M, Amphawan A (2016) Improvement in temperature sensitivity of FBG by coating of different materials. Optik 127:825–828

    Article  CAS  Google Scholar 

  10. Ding M, Yang B, Jiang P (2017) High-sensitivity thermometer based on singlemode-multimode FBG-singlemode fiber. Opt Laser Technol

  11. Chen M-q, Zhao Y, Lv R-q, Xia F (2017) Hybrid MEFPI/FBG sensor for simultaneous measurement of strain and magnetic field. Opt Fiber Technol 39, 32–36

  12. Gurpreet Kaur RS, Kaler NK (2017) Investigations on highly sensitive fiber Bragg gratings with different grating shapes for far field applications. Optik 131:483–489

    Article  CAS  Google Scholar 

  13. Dong L, Ma J, Ibrahim Z, Ismail Z (2017) Etched FBG coated with polyimide for simultaneous detection the salinity and temperature. Opt Commun 392:218–222

    Article  CAS  Google Scholar 

  14. Hussein Esam MA, Waller EJ (1998) Review of one-side approaches to radiographic imaging for detection of explosives and narcotics. Radiat Meas 29(6):581–591

    Article  Google Scholar 

  15. Gilbertson S, Jackson SI, Vincent SW, Rodriguez G (2015) Detection of high explosive detonation across material interfaces with chirped fiber Bragg gratings. Appl Opt 54(13):3849–3854

    Article  CAS  Google Scholar 

  16. Wei P, Lang H, Liu T, Dong X (2017) Detonation velocity measurement with chirped fiber Bragg grating. Sensors 17(11):2552

    Article  CAS  Google Scholar 

  17. Rodriguez G, Sandberg RL, Jackson SI, Vincent SW, Gilbertson SM, Udd E (2014) Fiber Bragg sensing of high explosive detonation experiments at Los Alamos National Laboratory. J Phys Conf Ser 500(14):142030. IOP Publishing

    Article  CAS  Google Scholar 

  18. Rodriguez G, Gilbertson S (2017) Ultrafast fiber Bragg grating interrogation for sensing in detonation and shock wave experiments. Sensors 17(2):248

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabu Krishnan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shree, M.D., Sangeetha, A. & Krishnan, P. Design and Analysis of FBG Sensor for Explosive Detection Applications. Plasmonics 15, 813–819 (2020). https://doi.org/10.1007/s11468-019-01100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01100-x

Keywords

Navigation