Skip to main content
Log in

High Extinction Ratio All-Optical Modulator Using a Vanadium-Dioxide Integrated Hybrid Plasmonic Waveguide

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The combination of vanadium dioxide with waveguides has attracted remarkable attention for terahertz applications. Here, a novel all-optical modulator with high performance based on coupling between photonic and plasmonic modes is proposed and analyzed numerically and theoretically. The hybrid modulator is composed of the grating metal-insulator-metal layers of Au/VO2/Au nanostructures which are located in silicon waveguide periodically. The improved coupled-mode theory is used to validate the performance of the proposed structure theoretically. The maximum extinction ratio and minimum insertion loss of 18.7 dB and 4.15 dB in 1.55-μm wavelength is obtained. The high optical bandwidth of 76 nm with the extinction ratio more than 15 dB over the optical range is computed. Also, the length and the cross section of the modulator are 0.9 μm and 0.11 μm2, respectively. The proposed structure could be a highly promising candidate as it works significantly in remote communication systems due to the high extinction ratio and low insertion loss as well as small footprint for integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sun Z, Martinez A, Wang F (2016) Optical modulators with 2D layered materials. Nat Photonics 10(4):227–238

    CAS  Google Scholar 

  2. Bermúdez-Ureña E, Tutuncuoglu G, Cuerda J, Smith CLC, Bravo-Abad J, Bozhevolnyi SI, Fontcuberta i Morral A, García-Vidal FJ, Quidant R (2017) Plasmonic waveguide-integrated nanowire laser. Nano Lett 17(2):747–754

    PubMed  PubMed Central  Google Scholar 

  3. Moradiani F, Mohamadi AM, Seifouri M (2020) High-performance tunable multi-channel graphene-based square ring resonator demultiplexer. Opt Commun 126218

  4. Veronis G, Fan S (2006) Subwavelength plasmonic waveguide structures based on slots in thin metal films. In Quantum Electronics and Laser Science Conference, p. JThC94. Opt Soc Am

  5. Hryciw A, Jun YC, Brongersma ML (2010) Plasmonics: Electrifying plasmonics on silicon. Nat Mater 9:3–4

    CAS  PubMed  Google Scholar 

  6. Sederberg S, Driedger D, Nielsen M, Elezzabi AY (2011) Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator. Opt Express 19:23494–23503

    CAS  PubMed  Google Scholar 

  7. Chenran Ye, Zhuoran Li, Ke Liu, Richard Soref, Volker J. Sorger (2014) A Compact Plasmonic Silicon-based Electro-optic 2 × 2 Switch. IEEE J Select Topics Quant Electron

  8. Fang Y, Sun M (2015) Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light: Sci Appl 4(6):e294–e294

    CAS  Google Scholar 

  9. Halas NJ (2010) Plasmonics: an emerging field fostered by Nano Letters. Nano Lett 10(10):3816–3822

    CAS  PubMed  Google Scholar 

  10. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824

    CAS  PubMed  Google Scholar 

  11. Moradiani F, Farmani A, Yavarian M, Mir A, Behzadfar F (2020) A multimode graphene plasmonic perfect absorber at terahertz frequencies. Phys E: Low-dimensional Syst Nanostruct 114159

  12. Alipour A, Mir A, Farmani A (2020) Ultra high-sensitivity and tunable dual-band perfect absorber as a plasmonic sensor. Opt Laser Technol 127:106201

    CAS  Google Scholar 

  13. Sharma Y, Ghosh RR, Sapra V, Jalal V, Ahmed K, Dhawan A (2019) Plasmonic switches based on arrays of plasmonic nanostructures surrounded by VO2 thin films. In: Quantum Sensing and Nano Electronics and Photonics XVI, vol 10926. International Society for Optics and Photonics, p 109262S

  14. Moradiani F, Seifouri M, Abedi K (2018) Design and analysis of plasmonic switch at mid-IR wavelengths with graphene nano-ribbons. 101–105

  15. Clark JK, Ho Y-L, Matsui H, Delaunay J-J (2017) Optically pumped hybrid plasmonic-photonic waveguide modulator using the VO2 metal-insulator phase transition. IEEE Photon J 10(1):1–9

    Google Scholar 

  16. Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z et al (2014) Ultrafast all-optical graphene modulator. Nano Lett 14(2):955–959

    CAS  PubMed  Google Scholar 

  17. Babicheva VE, Boltasseva A, Lavrinenko AV (2015) Transparent conducting oxides for electro-optical plasmonic modulators. Nanophotonics 4(1):165–185

    CAS  Google Scholar 

  18. Wei B, Jian S (2017) Metal–dielectric–metal waveguide-based broadband plasmonic filter in visible spectral range. J Nanophoton 11(4):046003

    Google Scholar 

  19. Klein M, Badada BH, Binder R, Alfrey A, McKie M, Koehler MR, Mandrus DG et al (2019) 2D semiconductor nonlinear plasmonic modulators. arXiv preprint arXiv:1902.04626

  20. Sun F, Xia L, Nie C, Qiu C, Tang L, Shen J, Sun T et al (2019) An all-optical modulator based on a graphene–plasmonic slot waveguide at 1550 nm. Appl Phys Express 12(4):042009

    CAS  Google Scholar 

  21. Pacifici D, Lezec HJ, Atwater HA (2007) All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat Photonics 1(7):402–406

    CAS  Google Scholar 

  22. Markov P, Appavoo K, Haglund RF, Weiss SM (2015) Hybrid Si-VO2-Au optical modulator based on near-field plasmonic coupling. Opt Express 23(5):6878–6887

    CAS  PubMed  Google Scholar 

  23. Wen Q-Y, Tian W, Mao Q, Chen Z, Liu W-W, Yang Q-H, Sanderson M, Zhang H-W (2014) Graphene based all-optical spatial terahertz modulator. Sci Rep 4:7409

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma ZT, Geng ZX, Fan ZY, Liu J, Chen HD (2019) Modulators for terahertz communication: the current state of the art. Research 2019:6482975

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu Q, Chen S, Wang Y, Wu L, Jiang X, Zhang F, Jin X et al (2019) MZI-based all-optical modulator using MXene Ti3C2Tx (T= F, O, or OH) deposited microfiber. Adv Mater Technol 4(4):1800532

    Google Scholar 

  26. Xiao B, Li Y-c, Yu X-f, Cheng J-b (2016) MXenes: reusable materials for NH3 sensor or capturer by controlling the charge injection. Sensors Actuators B Chem 235:103–109

    CAS  Google Scholar 

  27. Fan Z, Geng Z, Lv X, Su Y, Yang Y, Liu J, Chen H (2017) Optical controlled terahertz modulator based on tungsten disulfide nanosheet. Sci Rep 7(1):14828

    PubMed  PubMed Central  Google Scholar 

  28. Gholipour B, Zhang J, MacDonald KF, Hewak DW, Zheludev NI (2013) An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv Mater 25(22):3050–3054

    CAS  PubMed  Google Scholar 

  29. Miller KJ, Haglund RF, Weiss SM (2018) Optical phase change materials in integrated silicon photonic devices. Opt Mater Express 8(8):2415–2429

    CAS  Google Scholar 

  30. Kotb R, Ismail Y, Swillam MA (2015) Nonlinear tuning techniques of plasmonic nano-filters. Opt Commun 336:306–314

    CAS  Google Scholar 

  31. Chen J-H, Zheng B-C, Shao G-H, Ge S-J, Xu F, Lu Y-Q (2015) An all-optical modulator based on a stereo graphene–microfiber structure. Light: Sci Appl 4(12):e360–e360

    CAS  Google Scholar 

  32. Yu S, Wu X, Chen K, Chen B, Guo X, Dai D, Tong L, Liu W, Shen YR (2016) All-optical graphene modulator based on optical Kerr phase shift. Optica 3(5):541–544

    CAS  Google Scholar 

  33. Wan C, Zhang Z, Woolf D, Hessel CM, Rensberg J, Hensley JM, Xiao Y et al (2019) On the optical properties of thin-film vanadium dioxide from the visible to the far infrared. Ann Phys 531(10):1900188

    CAS  Google Scholar 

  34. Pan L, Park Y, Xiong Y, Ulin-Avila E, Wang Y, Zeng L, Xiong S et al (2011) Maskless plasmonic lithography at 22 nm resolution. Sci Rep 1:175

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Okada M, Miyake H, Iyoshi S, Yukawa T, Katase T, Tone K, Haruyama Y, Matsui S (2013) Double patterning in nanoimprint lithography. Microelectron Eng 112:139–142

    CAS  Google Scholar 

  36. Dong J, Liu J, Liu P, Liu J, Zhao X, Kang G, Xie J, Wang Y (2013) Surface plasmon interference lithography with a surface relief metal grating. Opt Commun 288:122–126

    CAS  Google Scholar 

  37. He M, Zhang Z, Shi S, Du J, Li X, Li S, Ma W (2010) A practical nanofabrication method: surface plasmon polaritons interference lithography based on backside-exposure technique. Opt Express 18(15):15975–15980

    CAS  PubMed  Google Scholar 

  38. Neira AD, Wurtz GA, Ginzburg P, Zayats AV (2014) Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry. Opt Express 22(9):10987–10994

    PubMed  Google Scholar 

  39. Weis P, Garcia-Pomar JL, Höh M, Reinhard B, Brodyanski A, Rahm M (2012) Spectrally wide-band terahertz wave modulator based on optically tuned graphene. ACS Nano 6(10):9118–9124

    CAS  PubMed  Google Scholar 

  40. Miller KJ, Hallman KA, Haglund RF, Weiss SM (2017) Optical modulation in silicon-vanadium dioxide photonic structures. Proc SPIE Nanosci Eng 10345:103451D

    Google Scholar 

  41. Muskens OL, Bergamini L, Wang Y, Gaskell JM, Zabala N, de Groot CH, Sheel DW, Aizpurua J (2016) Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide. Light Sci Appl 5(10):e16173

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ryckman JD, Hallman KA, Marvel RE, Haglund RF, Weiss SM (2013) Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition. Opt Express 21(9):10753–10763

    CAS  PubMed  Google Scholar 

  43. Almeida VR, Barrios CA, Panepucci RR, Lipson M (2004) All-optical control of light on a silicon chip. Nature 431(7012):1081–1084

    CAS  PubMed  Google Scholar 

  44. Assanto G, Marques MB (1991) STEGEMAN, George I. Grating coupling of light pulses into third-order nonlinear waveguides. JOSA B 8.3:553–561 12

    Google Scholar 

  45. Zhang S, Yu X, Zhang Y, Shum P, Zhang Y, Xia L, Liu D (2012) Theoretical study of dual-core photonic crystal fibers with metal wire. IEEE Photon J 4(4):1178–1187

    Google Scholar 

  46. Meng XJ, Okamoto N (1991) Improved coupled-mode theory for nonlinear directional couplers. IEEE J Quantum Electron 27(5):1175–1181

    CAS  Google Scholar 

  47. Marcatili E (1986) Improved coupled-mode equations for dielectric guides. IEEE J Quantum Electron 22(6):988–993

    Google Scholar 

  48. Yamamoto Y, Kamiya T, Yanai H (1978) Improved coupled mode analysis of corrugated waveguides and lasers. IEEE J Quantum Electron 14(4):245–258

    Google Scholar 

  49. Johnson PB, Christy R-W (1972) Optical constants of the noble metals. Phys Rev B6(12):4370

    Google Scholar 

  50. Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37(22):5271–5283

    PubMed  Google Scholar 

  51. Yang R, Zhaolin L (2012) Subwavelength plasmonic waveguides and plasmonic materials. Int J Opt 2012:1–12

    Google Scholar 

  52. Song Y, Wang J, Li Q, Yan M, Qiu M (2010) Broadband coupler between silicon waveguide and hybrid plasmonic waveguide. Opt Express 18(12):13173–13179

    CAS  PubMed  Google Scholar 

  53. Crutchfield WY, Cheng H, Greengard L (2004) Sensitivity analysis of photonic crystal fiber. Opt Express 12(18):4220–4226

    CAS  PubMed  Google Scholar 

  54. Février M, Gogol P, Aassime A, Mégy R, Delacour C, Chelnokov A, Apuzzo A, Blaize S, Lourtioz J-M, Dagens B (2012) Giant coupling effect between metal nanoparticle chain and optical waveguide. Nano Lett 12(2):1032–1037

    PubMed  Google Scholar 

  55. Liu M, Hwang HY, Hu T, Strikwerda AC, Fan K, Keiser GR, Sternbach AJ et al (2012) Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487(7407):345

    CAS  PubMed  Google Scholar 

  56. Wei M, Zhang D, Li Y, Zhang L, Jin L, Wen T, Bai F, Zhang H (2019) High-performance all-optical terahertz modulator based on graphene/TiO2/Si trilayer heterojunctions. Nanoscale Res Lett 14(1):159

    PubMed  PubMed Central  Google Scholar 

  57. Cartledge JC (1995) Performance of 10 Gb/s light wave systems based on lithium niobate Mach-Zehnder modulators with asymmetric Y-branch waveguides. IEEE Photon Technol Lett 7(9):1090–1092

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Seifouri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradiani, F., Seifouri, M., Abedi, K. et al. High Extinction Ratio All-Optical Modulator Using a Vanadium-Dioxide Integrated Hybrid Plasmonic Waveguide. Plasmonics 16, 189–198 (2021). https://doi.org/10.1007/s11468-020-01276-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01276-7

Keywords

Navigation