Skip to main content
Log in

Design Plasmonic Optical 4 × 2 Encoder Based on 2D Photonic Crystal Ring Resonator

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Digital encoders are one of the key devices required in optical communication and digital signal processing systems. In this paper, a new photonic crystal structure is used to design all-optical 4 × 2 encoder constructed from GaAs rods with square lattice in the pentane background based on plasmonic effect. Gold rods have also been used at the interface of dielectric rods and lines defect, which create plasmonic properties into the photonic crystal structure. The designed optical device is composed of four input waveguides and two output waveguides with two ring resonators at the resonant wavelength of 1.14 μm with TM polarization. The presented encoder platform has the small size of 19 μm × 33 μm that makes it to integration into compact all-optical processing systems. The encoder operation is simulated and analyzed with numerical finite-difference time-domain (FDTD) method and plane wave expansion (PWE) method. In the proposed structure, we have shown that by selecting the appropriate radius size for the resonant cavities, the desirable wavelength can be obtained. The maximum values of transmission efficiency for the first and second outputs are 82% and 96%, respectively. Resonant cavities are also located in the crystal lattice in such a way that by activating third input, 50% and 48% of the input signal will be obtained in each output ports indicating (1,1) logic state. So the new plasmonic photonic crystal encoder could be future applicable in the field of optical computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mehdizadeh F, Soroosh M (2016) A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photon Netw Commun 31(1):65–70

    Article  Google Scholar 

  2. Sun F, Xia L, Nie C, Shen J, Zou Y, Cheng G, Wu H, Zhang Y, Wei D, Yin S (2018) The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure. Nanotechnology 29(13):135201

    Article  Google Scholar 

  3. Pukhrambam PD (2018) Wavelength division multiplexing laser arrays for applications in optical networking and sensing: overview and perspectives. Japanese Journal of Applied Physics 57 (8S2):08PA03.https://doi.org/10.7567/JJAP.57.08PA03

  4. Massaro A (2012) Photonic Crystals: Introduction, Applications and Theory. BoD–Books on Demand.

  5. Ghadrdan M, Mansouri-Birjandi MA (2013) Concurrent implementation of all-optical half-adder and AND & XOR logic gates based on nonlinear photonic crystal. Opt Quant Electron 45(10):1027–1036

    Article  Google Scholar 

  6. Rafiee E, Emami F (2017) Design of a novel all-optical ring shaped demultiplexer based on two-dimensional photonic crystals. Optik 140:873–877. https://doi.org/10.1016/j.ijleo.2017.05.010

  7. Gandhi SI, Sridarshini T (2019) Design of photonic crystal based optical digital to analog converters. Laser Phys 29(4):046206

    Article  CAS  Google Scholar 

  8. Geravand A, Danaie M, Mohammadi S (2019) All-optical photonic crystal memory cells based on cavities with a dual-argument hysteresis feature. Optics Communications 430:323–335. https://doi.org/10.1016/j.optcom.2018.08.052

  9. Kuramochi E, Nozaki K, Shinya A, Takeda K, Sato T, Matsuo S, Taniyama H, Sumikura H, Notomi M (2014) Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip. Nat Photonics 8(6):474–481

    Article  CAS  Google Scholar 

  10. Lambert C-H, Mangin S, Varaprasad BCS, Takahashi Y, Hehn M, Cinchetti M, Malinowski G, Hono K, Fainman Y, Aeschlimann M (2014) All-optical control of ferromagnetic thin films and nanostructures. Science 345 (6202):1337–1340. https://doi.org/10.1126/science.1253493

  11. Dong W, Huang Z, Hou J, Santos R, Zhang X (2018) Integrated all-optical programmable logic array based on semiconductor optical amplifiers. Opt Lett 43(9):2150–2153. https://doi.org/10.1364/OL.43.002150

    Article  CAS  PubMed  Google Scholar 

  12. Hassangholizadeh-Kashtiban M, Sabbaghi-Nadooshan R, Alipour-Banaei H (2015) A novel all optical reversible 4× 2 encoder based on photonic crystals. Optik 126 (20):2368–2372. https://doi.org/10.1016/j.ijleo.2015.05.140

  13. Ouahab I, Naoum R (2016) A novel all optical 4× 2 encoder switch based on photonic crystal ring resonators. Optik 127 (19):7835–7841. https://doi.org/10.1117/12.852155

  14. Lee K-Y, Yang Y-C, Lin Y-J, Lee W-Y, Lee C-C, Wong S-H The designs of 4× 2 encoder based on photonic crystals. In: 2009 Asia Communications and Photonics conference and Exhibition (ACP), 2009. IEEE, pp 1–7. https://doi.org/10.1117/12.852155

  15. Moniem TA (2017) All-optical XNOR gate based on 2D photonic-crystal ring resonators. Quantum Electronics 47 (2):169. https://doi.org/10.1070/QEL16279

  16. Sivaranjani R, Sundar DS, Sridarshini T, Sitharthan R, Karthikeyan M, Raja AS, Carrasco MF (2020) Photonic crystal based all-optical half adder: a brief analysis. Laser Phys 30(11):116205

    Article  Google Scholar 

  17. Liu L, Liao S (2020) Low-power active tunable microwave photonic filter using photonic crystal nanocavities. IEEE Photonics Technology Letters 32 (16):999–1002. https://doi.org/10.1109/LPT.2020.3008865

  18. Glukhov IA, Dadoenkova YS, Bentivegna FF, Moiseev SG (2020) Deterministic aperiodic photonic crystal with a 2D array of metallic nanoparticles as polarization-sensitive dichroic filter. J Appl Phys 128(5):053101. https://doi.org/10.1063/5.0008652

    Article  CAS  Google Scholar 

  19. Li M, Ling J, He Y, Javid UA, Xue S, Lin Q (2020) Lithium niobate photonic-crystal electro-optic modulator. Nat Commun 11(1):1–8

    Article  Google Scholar 

  20. Rajasekar R, Parameshwari K, Robinson S (2019) Nano-optical switch based on photonic crystal ring resonator. Plasmonics 14(6):1687–1697

    Article  CAS  Google Scholar 

  21. Mehdizadeh F, Alipour-Banaei H, Serajmohammadi S (2017) Study the role of non-linear resonant cavities in photonic crystal-based decoder switches. J Mod Opt 64(13):1233–1239

    Article  CAS  Google Scholar 

  22. Zhao T, Asghari M, Mehdizadeh F (2019) An all-optical digital 2-to-1 multiplexer using photonic crystal-based nonlinear ring resonators. J Electron Mater 48(4):2482–2486

    Article  CAS  Google Scholar 

  23. Rong W, Zhen L, Qingbo Y, Xiaosuo W (2019) Eight-channel photonic-crystal wavelength-division multiplexer. Laser & Optoelectronics Progress 56(9):091302

    Article  Google Scholar 

  24. Maksymov IS (2011) Optical switching and logic gates with hybrid plasmonic–photonic crystal nanobeam cavities. Physics Letters A 375 (5):918–921. https://doi.org/10.1016/j.physleta.2010.12.054

  25. Asgari S, Granpayeh N, Kashani ZG (2018) Plasmonic mid-infrared wavelength selector and linear logic gates based on graphene cylindrical resonator. IEEE Trans Nanotechnol 18:42–50

    Article  Google Scholar 

  26. Amiri I, Palai G, Tripathy S, Nayak S (2019) Realisation of all photonic logic gates using plasmonic-based photonic structure through bandgap analysis. Optik 194:163123. https://doi.org/10.1016/j.ijleo.2019.163123

    Article  CAS  Google Scholar 

  27. Daghooghi T, Soroosh M, Ansari-Asl K (2018) A novel proposal for all-optical decoder based on photonic crystals. Photon Netw Commun 35(3):335–341

    Article  Google Scholar 

  28. Zamanian-Dehkordi S, Soroosh M, Akbarizadeh G (2018) An ultra-fast all-optical RS flip-flop based on nonlinear photonic crystal structures. Opt Rev 25(4):523–531

    Article  CAS  Google Scholar 

  29. Mehdizadeh F, Soroosh M, Alipour-Banaei H, Farshidi E (2017) All optical 2-bit analog to digital converter using photonic crystal based cavities. Opt Quant Electron 49(1):38. https://doi.org/10.1080/09500340.2016.1275854

    Article  CAS  Google Scholar 

  30. Salimzadeh A, Alipour-Banaei H (2018) An all optical 8 to 3 encoder based on photonic crystal OR-gate ring resonators. Optics communications 410:793–798. https://doi.org/10.1016/j.optcom.2017.11.036

  31. Fan R, Yang X, Meng X, Sun X (2016) 2D photonic crystal logic gates based on self-collimated effect. Journal of Physics D: Applied Physics 49 (32):325104. https://doi.org/10.1088/0022-3727/49/32/325104

  32. Wang C, Li Z-Y (2013) Ultracompact linear on-chip silicon optical logic gates with phase insensitivity. EPL (Europhysics Letters) 103(6):64001

    Article  Google Scholar 

  33. Moniem TA (2016) All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators. J Mod Opt 63(8):735–741. https://doi.org/10.1080/09500340.2015.1094580

    Article  CAS  Google Scholar 

  34. Mehdizadeh F, Soroosh M, Alipour-Banaei H (2016) Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectronics 11 (1):29–35.https://doi.org/10.1049/iet-opt.2016.0022

  35. Yang Y-P, Lin K-C, Yang I-C, Lee K-Y, Lee W-Y, Tsai Y-T (2017) All-optical photonic-crystal encoder capable of operating at multiple wavelengths. Optik 142:354–359. https://doi.org/10.1016/j.ijleo.2017.05.067

    Article  Google Scholar 

  36. Parandin F (2019) High contrast ratio all-optical 4 × 2 encoder based on two-dimensional photonic crystals. Optics & Laser Technology 113:447–452.https://doi.org/10.1016/j.optlastec.2019.01.003

  37. Alipour-Banaei H, Serajmohammadi S, Mehdizadeh F (2014) All optical NOR and NAND gate based on nonlinear photonic crystal ring resonators. Optik 125(19):5701–5704. https://doi.org/10.1016/j.ijleo.2014.06.013

    Article  Google Scholar 

  38. Gogoi N, Sahu PP (2015) All-optical compact surface plasmonic two-mode interference device for optical logic gate operation. Appl Opt 54(5):1051–1057. https://doi.org/10.1364/AO.54.001051

    Article  CAS  PubMed  Google Scholar 

  39. Huang W, Zhou Y, Du J, Deng Y, He Y (2018) Versatile visual logic operations based on plasmonic switching in label-free molybdenum oxide nanomaterials. Anal Chem 90(3):2384–2388. https://doi.org/10.1021/acs.analchem.7b05097

    Article  CAS  PubMed  Google Scholar 

  40. Chauhan D, Mola GT, Dwivedi RP (2020) An ultra-compact plasmonic Modulator/Switch using VO2 and elasto-optic effect. Optik 201:163531. https://doi.org/10.1016/j.ijleo.2019.163531

    Article  CAS  Google Scholar 

  41. Ooi KJ, Chu HS, Bai P, Ang LK (2014) Electro-optical graphene plasmonic logic gates. Opt Lett 39(6):1629–1632. https://doi.org/10.1364/OL.39.001629

    Article  CAS  PubMed  Google Scholar 

  42. Fu Y, Hu X, Lu C, Yue S, Yang H, Gong Q (2012) All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett 12(11):5784–5790. https://doi.org/10.1021/nl303095s

    Article  CAS  PubMed  Google Scholar 

  43. Akhlaghi M, Nozhat N, Emami F (2014) Investigating the optical switch using dimer plasmonic nano-rods. IEEE Transactions on Nanotechnology 13 (6):1172–1175. https://doi.org/10.1109/TNANO.2014.2349361

  44. Zhang T, Callard S, Jamois C, Chevalier C, Feng D, Belarouci A (2014) Plasmonic-photonic crystal coupled nanolaser. Nanotechnology 25(31):315201

    Article  Google Scholar 

  45. Ignatov AI, Merzlikin AM (2020) Two optical sensing elements for H2O and NO2 gas sensing based on the single plasmonic–photonic crystal slab. Advanced Optical Technologies 9(4):203–208. https://doi.org/10.1515/aot-2019-0059

    Article  CAS  Google Scholar 

  46. Negahdari R, Rafiee E, Emami F (2018) Design and simulation of a novel nano-plasmonic split-ring resonator filter. Journal of Electromagnetic Waves and Applications 32(15):1925–1938. https://doi.org/10.1080/09205071.2018.1482240

    Article  Google Scholar 

  47. Osman P, Sridevi P, Raju K Plasmonic square ring resonator based band-stop filter using MIM Waveguide. In: Intelligent System Design. Springer, pp 71–76

  48. Nguyen TG, Mitchell A (2006) Analysis of optical waveguides with multilayer dielectric coatings using plane wave expansion. J Lightwave Technol 24(1):635

    Article  Google Scholar 

  49. Schneider JB (2010) Understanding the finite-difference time-domain method. School of electrical engineering and computer science Washington State University:28

Download references

Author information

Authors and Affiliations

Authors

Contributions

Samaneh hamedi (40%), Roozbeh negahdari (35%), and Hamidreza Ansari (35%).

Corresponding author

Correspondence to Samaneh Hamedi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamedi, S., Negahdari, R. & Ansari, H.R. Design Plasmonic Optical 4 × 2 Encoder Based on 2D Photonic Crystal Ring Resonator. Plasmonics 16, 1983–1990 (2021). https://doi.org/10.1007/s11468-021-01461-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01461-2

Keywords

Navigation