Skip to main content
Log in

Reforming the Capacitive Edges in the Plasmonic Radiator of THz Antenna Using Graphene for Controllable Notched Band

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This research work reports a technique using which the antenna response can be reformed either with or without band notch characteristics. A metallic antenna is implemented for attaining the wideband response in terahertz (THz) frequency covering 8.55–12.4 THz. The radiator is inscribed with the slots in it for attaining the band notch feature in antenna in the range 8.62–9.53 THz over the covering frequency range of 8.15–14.56 THz. The created slots in the antenna radiator create the capacitive effect leading to the filtering attributes. Slots are filled with the graphene material for acquiring the reformation capability in antenna. The surface conductivity of graphene is set at the higher value for removal of the formed capacitive edges and hence the field confinement from antenna radiator which mitigates the created filtering attributes. The lower value of the surface conductivity of graphene leads to reform the capacitive effect and hence the field confinement and the filtering characteristics. The antenna provides the gain in the range of 4–7 dBi with the radiation efficiency of more than 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

There is no associated data with this research work.

References

  1. Wang R, Ren XG, Yan Z, Jiang LJ, Sha WEI, Shan GC (2019) Graphene based functional devices: A short review. Front Phys 14:1. https://doi.org/10.1007/s11467-018-0859-y

    Article  Google Scholar 

  2. Varshney G (2020) Reconfigurable graphene antenna for THz applications: a mode conversion approach. Nanotechnology 31(13):11. https://doi.org/10.1088/1361-6528/ab60cc

    Article  CAS  Google Scholar 

  3. Varshney G, Giri P (2021) Bipolar charge trapping for absorption enhancement in a graphene-based ultrathin dual-band terahertz biosensor. Nanoscale Adv 3(20):5813–5822. https://doi.org/10.1039/d1na00388g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sensale-Rodriguez B et al (2012) Broadband graphene terahertz modulators enabled by intraband transitions. Nat Commun 3:780. https://doi.org/10.1038/ncomms1787

    Article  CAS  PubMed  Google Scholar 

  5. Khan MS, Varshney G, Giri P (2021) Altering the multimodal resonance in ultrathin silicon ring for tunable THz biosensing. IEEE Trans Nanobiosci 20(4):488–496. https://doi.org/10.1109/TNB.2021.3105561

    Article  Google Scholar 

  6. Nejat M, Nozhat N (2019) Ultrasensitive THz refractive index sensor based on a controllable perfect MTM absorber. IEEE Sens J 19(22):10490–10497. https://doi.org/10.1109/JSEN.2019.2931057

    Article  CAS  Google Scholar 

  7. Varshney G (2020) Tunable terahertz dielectric resonator antenna. SILICON 13(2021):1907–1915. https://doi.org/10.1007/s12633-020-00577-0

    Article  CAS  Google Scholar 

  8. Vishwanath, Babu R, Sharma V, Sahana BC, Varshney G (2023) Controlling the resonant modes / bandwidth using graphene strip and isolation enhancement in a two - port THz MIMO. Opt Quantum Electron 55:1–15. https://doi.org/10.1007/s11082-023-04970-y

    Article  CAS  Google Scholar 

  9. Lee KF, Tong KF (2012) Microstrip patch antennasbasic characteristics and some recent advances. Proc IEEE 100(7):2169–2180. https://doi.org/10.1109/JPROC.2012.2183829

    Article  Google Scholar 

  10. Losada V, Boix RR, Horno M (1999) Resonant modes of circular microstrip patches in multilayered substrates. IEEE Trans Microw Theory Tech 47(4):488–498. https://doi.org/10.1109/22.754883

    Article  Google Scholar 

  11. Michalski KA, Zheng D (1992) Analysis of microstrip resonators of arbitrary shape. IEEE Trans Microw Theory Tech 40(1):112–119. https://doi.org/10.1109/22.108330

    Article  Google Scholar 

  12. Aqlan B, Himdi M, Vettikalladi H, Le-Coq L (2021) A circularly polarized sub-terahertz antenna with low-profile and high-gain for 6G wireless communication systems. IEEE Access PP:1–1. https://doi.org/10.1109/access.2021.3109161

    Article  Google Scholar 

  13. Abohmra A et al (2021) An ultrawideband microfabricated gold-based antenna array for terahertz communication. IEEE Antennas Wirel Propag Lett. 14(8):1–1. https://doi.org/10.1109/lawp.2021.3072562

    Article  Google Scholar 

  14. Alibakhshikenari M et al (2021) High-isolation antenna array using SIW and realized with a graphene layer for sub-terahertz wireless applications. Sci Rep 11(1):1–14. https://doi.org/10.1038/s41598-021-87712-y

    Article  CAS  Google Scholar 

  15. Zak A et al (2014) Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene. Nano Lett 14(10):5834–5838. https://doi.org/10.1021/nl5027309

    Article  CAS  PubMed  Google Scholar 

  16. Moradi K, Pourziad A, Nikmehr S (2021) A frequency reconfigurable microstrip antenna based on graphene in terahertz regime. Optik (Stuttg) 228(December 2020):166201. https://doi.org/10.1016/j.ijleo.2020.166201

    Article  CAS  Google Scholar 

  17. Naik KK, Suman M, Rao EK (2021) Design of complementary split ring resonators on elliptical patch antenna with enhanced gain for terahertz applications. Optik (Stuttg) 243:167434. https://doi.org/10.1016/j.ijleo.2021.167434

    Article  CAS  Google Scholar 

  18. Krishna CM, Das S, Nella A, Lakrit S, Madhav BTP (2021) A micro-sized rhombus-shaped thz antenna for high-speed short-range wireless communication applications. Plasmonics 16(0123456789):2167–2177. https://doi.org/10.1007/s11468-021-01472-z

    Article  CAS  Google Scholar 

  19. Das V, Rawat S (2021) Design and analysis of monopole planar antenna with defected ground plane for WBAN applications in terahertz range. Optik (Stuttg) 248:168187. https://doi.org/10.1016/j.ijleo.2021.168187

    Article  Google Scholar 

  20. Kiani N, Tavakkol Hamedani F, Rezaei P, Jafari Chashmi M, Danaie M (2020) Polarization controling approach in reconfigurable microstrip graphene-based antenna. Optik (Stuttg) 203:163942. https://doi.org/10.1016/j.ijleo.2019.163942

    Article  CAS  Google Scholar 

  21. Kiani N, Tavakkol Hamedani F, Rezaei P (2022) Realization of polarization adjusting in reconfigurable graphene-based microstrip antenna by adding leaf-shaped patch. Micro Nanostruct 168(May):207322. https://doi.org/10.1016/j.micrna.2022.207322

    Article  CAS  Google Scholar 

  22. Sharma T, Varshney G, Yaduvanshi RS, Vashishath M (2022) Modified Koch borderline monopole antenna for THz regime. Opt Quantum Electron 54(5):1–16. https://doi.org/10.1007/s11082-022-03687-8

    Article  Google Scholar 

  23. Sharma T, Varshney G, Vashishath RSYM (2020) Obtaining the tunable band-notch in ultrawideband THz antenna using graphene nanoribbons. Opt Eng 59(4):047103–1–047103–11. https://doi.org/10.1117/1.OE.59.4.047103

    Article  Google Scholar 

  24. Srivastava K, Varshney G, Singh R (2021) Compact ultra-wideband monopole antenna with tunable notch bandwidth/frequency ratio. Frequenz 75(7–8):289–300. https://doi.org/10.1515/freq-2020-0173

  25. Varshney G (2020) Ultra-Wideband Antenna Using Graphite Disk Resonator for THz. Superlattices Microstruct. https://doi.org/10.1016/j.spmi.2020.106480

    Article  Google Scholar 

  26. Forsythe RE, Bohlander RA, Butterworth JC (1991) An experimental 225 GHZ pulsed coherent radar. IEEE Trans Microw Theory Tech 39(3):555–562. https://doi.org/10.1109/22.75300

    Article  Google Scholar 

  27. Kumar D, Sharma A, Arora A, Giri P, Varshney G (2022) Terahertz antenna with tunable filtering characteristics. Opt Quantum Electron 54(12):1–12. https://doi.org/10.1007/s11082-022-04281-8

    Article  CAS  Google Scholar 

  28. Khan MS, Priya BJ, Aishika R, Varshney G (2023) Implementing the circularly polarized THz antenna with tunable filtering characteristics. Results Opt 11:100377. https://doi.org/10.1016/j.rio.2023.100377

    Article  Google Scholar 

  29. Ali MF, Jiya T, Singh KR, Varshney G (2023) Terahertz antenna with controllable and tunable filtering characteristics. Micro Nano Struct 174:207476. https://doi.org/10.1016/j.micrna.2022.207476

    Article  CAS  Google Scholar 

  30. Ali MF, Jawed Z, Raj V, Varshney G (2022) Terahertz antenna with tunable filtering. Appl Opt 61:36. https://doi.org/10.1007/s11082-022-04281-8

    Article  Google Scholar 

  31. Kumar D et al (2022) Terahertz ultra-wideband antenna with tunable band-notch creation using resonant/non-resonant graphene loop. Opt Eng 61(10):107106. https://doi.org/10.1117/1.oe.61.10.107106

  32. Kiani N, Tavakol Hamedani F, Rezaei P (2022) Implementation of a reconfigurable miniaturized graphene-based SIW antenna for THz applications. Micro and Nanostruct 169(April):207365. https://doi.org/10.1016/j.micrna.2022.207365

    Article  CAS  Google Scholar 

  33. Singh R, Varshney G (2023) Isolation enhancement technique in a dual-band THz MIMO antenna with single radiator. Opt Quantum Electron 55(539):1–17. https://doi.org/10.1007/s11082-023-04811-y

    Article  Google Scholar 

  34. Suñé GR (2008) Electron beam lithography for Nanofabrication, in Nanomaterials, Nanostructures, and Nanotechnologie (January), Institut de Microelectrònica de Barcelona. https://www.tdx.cat/bitstream/handle/10803/3404/grs1de2.pdf;jsessionid=9967A33ED91DCFDCB1BD1F860B231005?sequence=1

  35. Hanson GW (2008) Dyadic green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans Antennas Propag 56(3):747–757. https://doi.org/10.1109/TAP.2008.917005

    Article  Google Scholar 

  36. Samanta G, Mitra D (2018) Wideband THz antenna using graphene based tunable circular reactive impedance substrate. Optik (Stuttg) 158:1080–1087. https://doi.org/10.1016/j.ijleo.2017.12.197

    Article  CAS  Google Scholar 

  37. Varshney G, Verma A, Pandey VS, Yaduvanshi RS, Bala R (2018) A proximity coupleld wideband graphene antenna with the generation of higher order TM modes for THz applications. Opt Mater (Amst) 85:456–463

    Article  CAS  Google Scholar 

  38. Tripathi SK, Kumar M, Kumar A (2019) Graphene based tunable and wideband terahertz antenna for wireless network communication. Wirel Networks 25(7):4371–4381. https://doi.org/10.1007/s11276-019-02101-8

    Article  Google Scholar 

  39. Shamim SM, Das S, Hossain MA, Madhav BTP (2021) Investigations on graphene-based ultra-wideband (UWB) microstrip.pdf. Plasmonics 1–7

  40. Nickpay MR, Danaie M, Shahzadi A (2019) Wideband rectangular double-ring nanoribbon graphene-based antenna for terahertz communications. IETE J Res 68(3):1625–1634. https://doi.org/10.1080/03772063.2019.1661801

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Salman Khan and Amarnath have simulated the antenna and prepared the manuscript, Ankit Gupta has supervised and written the research work, and Gaurav Varshney has developed the idea and wrote the manuscript.

Corresponding author

Correspondence to Gaurav Varshney.

Ethics declarations

Ethics Approval

Not applicable.

Competing Interests

There is no competing interest among the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.S., Kumar, A., Gupta, A. et al. Reforming the Capacitive Edges in the Plasmonic Radiator of THz Antenna Using Graphene for Controllable Notched Band. Plasmonics 18, 2001–2008 (2023). https://doi.org/10.1007/s11468-023-01921-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01921-x

Keywords

Navigation