Skip to main content
Log in

Real-Time Determination of Structural Changes of Sodium Caseinate-Stabilized Emulsions Containing Pectin Using High Resolution Ultrasonic Spectroscopy

  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The interactions that lead to structure transitions in oil-in-water emulsions were investigated using high-resolution ultrasonic spectroscopy. High methoxyl pectin (HMP) was added to the emulsions at various concentrations and the dynamics of aggregation induced by changes in pH were observed. Two independent ultrasonic parameters, velocity and attenuation, were measured as a function of time or pH. At pH 6.8, both velocity and attenuation of sound changed as a function of HMP concentration. During acidification, caused by the addition of glucono-δ-lactone, there were small changes in the overall ultrasonic velocity, but it was possible to relate these changes to the structural changes in the emulsion. The values of ultrasonic attenuation decreased at high pH with increasing amount of HMP, indicating changes in the flocculation state of the oil droplets caused by depletion forces. During acidification at pH 5.4, emulsions containing HMP showed a steep increase in the ultrasonic attenuation, and this pH corresponds to the pH of association of HMP with the casein-covered oil droplets. The adsorption of HMP onto the interface causes a rearrangement of the oil droplets, and the emulsions containing sufficient amounts of HMP no longer gel at acid pH. This is well described by the ultrasonic attenuation changes in the various emulsions. This research demonstrated for the first time that ultrasonic spectroscopy can be employed for in situ monitoring and analysis of acid-induced destabilization of food emulsions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. H.A. Schols and A.G.J. Voragen, The chemical structure of pectins. In: Pectin and Their Manipulation, edited by G.B. Seymour and J.P. Knox (CRC, USA 2002), p. 1.

    Google Scholar 

  2. E. Bonnin, E. Dolo, A. Le Goff and J.-F. Thibault, Carb Res 337, 1687 (2002).

    Article  CAS  Google Scholar 

  3. M. Kazmierski, L. Wicker and M. Corredig, J Food Sci 68, 1673 (2003).

    Article  CAS  Google Scholar 

  4. P. Boulenguer and M.A. Laurent, Comparison of the stabilization mechanism of acid dairy drinks induced by pectin and soluble soybean polysaccharide (SSP). In: Advances in Pectin and Pectinase Research, edited by F. Voragen (Kluver Academic, Netherlands 2003), p. 467.

    Google Scholar 

  5. R.H. Tromp, C.G. de Kruif, M. van Eijk and C. Rolin, Food Hydrocoll 18, 565 (2004).

    Article  CAS  Google Scholar 

  6. J.R. Liu, A. Nakamura and M. Corredig, J Agric Food Chem 54, 6241 (2006).

    Article  CAS  Google Scholar 

  7. A. Maroziene and C.G. de Kruif, Food Hydrocoll 14, 391 (2000).

    Article  CAS  Google Scholar 

  8. H.G.M. Ruis, K. van Gruijthuijsen, P. Venema and E. van der Linden, Langmuir 23, 1007 (2007).

    Article  CAS  Google Scholar 

  9. J. Liu, M. Corredig and M. Alexander, Colloids Surf B: Biointerfaces in press (2007), DOI 10.1016/j.colsurfb.2007.05.004.

  10. A. Parker, P. Boulenguer and T.P. Kravtchenko, Effect of the addition of high methoxyl pectin on the rheology and colloidal stability of acid milk drinks. In: Food Hydrocolloids: Structure Properties and Functions, edited by K. Nishinari and E. Doi (Plenum, New York 1994), p. 307.

    Google Scholar 

  11. C. Bonnet, M. Corredig and M. Alexander, J Agric Food Chem 53, 8600 (2005).

    Article  CAS  Google Scholar 

  12. C. Dwyer, L. Donnelly and V. Buckin, J Dairy Res 72, 303 (2005).

    Article  CAS  Google Scholar 

  13. M. Corredig, E. Verespej and D.G. Dalgleish, J Agric Food Chem 52, 4465 (2004).

    Article  CAS  Google Scholar 

  14. D.G. Dalgleish, E. Verespej, M. Alexander and M. Corredig, Int Dairy J 15, 1105 (2005).

    Article  CAS  Google Scholar 

  15. A.S. Dukhin, P.J. Goetz and B. Travers, J Dairy Sci 88, 1320 (2005).

    Article  CAS  Google Scholar 

  16. V. Buckin and C. Smyth, Seminars Food Analysis 4, 113 (1999).

    Google Scholar 

  17. K. Gancz, M. Alexander and M. Corredig, J Agric Food Chem 53, 2236 (2005).

    Article  CAS  Google Scholar 

  18. A.S. Dukhin, P.J. Goetz, T.H. Wines and P. Somasundaran, Colloids Surf, A Physicochem Eng Asp 173, 127 (2000).

    Article  CAS  Google Scholar 

  19. J.R. Allegra and S.A. Hawley, J Acoustic Soc Amer 51, 1545 (1972).

    Article  CAS  Google Scholar 

  20. A.S. Dukhin and P.J. Goetz, Ultrasound for Characterizing Colloids. Particle sizing, Zeta Potential, Rheology (Elsevier, New York 2002).

    Book  Google Scholar 

  21. K. Gancz, M. Alexander and M. Corredig, Food Hydrocoll 20, 293 (2006).

    Article  CAS  Google Scholar 

  22. E. Dickinson, M.G. Semenova, A.S. Antipova and E.G. Pelan, Food Hydrocoll 12, 425 (1998).

    Article  CAS  Google Scholar 

  23. J. Surch, E.A. Decker and D.J. Mc Clements, Food Hydrocoll 20, 607 (2006).

    Article  CAS  Google Scholar 

  24. R. Chanamai, N. Herrmann and D.J. Mc Clements, J Colloid Interface Sci 204, 268 (1998).

    Article  CAS  Google Scholar 

  25. C.M. Bryant and D.J. Mc Clements, Food Hydrocoll 13, 439 (1999).

    Article  CAS  Google Scholar 

  26. F. Babick, F. Hinze and S. Ripperger, Colloids Surf A Physicochem Eng Asp 172, 33 (2000).

    Article  CAS  Google Scholar 

  27. K. Demetriades and D.J. McClements, Colloids Surf S: Physicochem Eng Asp 150, 45 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank CpKelco for donating the unstandardized pectins. The research was funded by the Natural Science and Engineering Council of Canadá and the Ontário Dairy Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena Corredig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Alexander, M., Verespej, E. et al. Real-Time Determination of Structural Changes of Sodium Caseinate-Stabilized Emulsions Containing Pectin Using High Resolution Ultrasonic Spectroscopy. Food Biophysics 2, 67–75 (2007). https://doi.org/10.1007/s11483-007-9032-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-007-9032-9

Keywords

Navigation