Skip to main content
Log in

Applications of Microfluidic Devices in Food Engineering

  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The design of novel food micro-structures aimed at the quality, health and pleasure markets will probably require unit operations where the scale of the forming device is closer to the size of the structural elements (i.e., 1–100 μm). One emerging possibility is microfluidics or devices that employ small amounts of fluids (10−6 to 10−9 l) flowing in channels where at least one dimension is less than 1 mm. However, under these conditions, the predominant effects are not necessarily those present in conventional macroscopic unit operations. Dominant physical effects at the microfluidic scale are introduced through the use of dimensionless numbers. Different types of geometries to generate multi-phase flows in micro-channels, techniques and materials to construct the micro-devices, principally soft lithography and laser ablation, as well as methods used to modify surface properties of channels, are reviewed. The operation of micro-devices, the role of flow regimes, rheological behaviour of fluids in micro-channels and of transient time is discussed. Finally, systems developed to generate emulsions and foams, fluid mixing and dispersion, and future applications of these devices in food processing and food analysis are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

Bo :

bond number, ΔρgL 2/σ, dimensionless

Ca :

Capillary number, μV/σ, dimensionless

D,d :

Diameter, m

E :

young modulus of fluid, Pa

g :

gravitational acceleration, m.s−2

H :

length, m

L,l :

Length, m

P :

Pressure, Pa

Re :

Reynolds number, ρVL/μ, dimensionless

Q :

Fluid flow rate, m3.s−1

V :

Velocity, m.s−1

We :

Weber number, ρLV 2/σ, dimensionless

α:

diffusion coefficient, m2.s−1

Δ:

differential operator

γ:

shear, rad

μ:

Dynamic viscosity, Pa.s

ρ:

Fluid density, kg.m−3

σ:

Surface tension, N.m−1

Ω:

Liquid fraction, Q l /(Q l + Q g )

g:

gas phase

l:

liquid phase

.:

time derivative

References

  1. J.M. Aguilera, Why food microstructure? J Food Eng 67, 3–11 (2005).

    Article  Google Scholar 

  2. J.M. Aguilera and D.W. Stanley, Microstructural Principles of Food Processing and Engineering 2nd ed (Aspen, Gaithersburg 1999).

    Google Scholar 

  3. H. Schubert, K. Ax and O. Behrend, Product engineering of dispersed systems, Trends Food Sci Tech 14, 9–16 (2003).

    Article  CAS  Google Scholar 

  4. G.M. Campbell and E. Mougeot, Creation and characterization of aerated food products, Trends Food Sci Tech 10, 283–296 (1999).

    Article  CAS  Google Scholar 

  5. M.E. Leser, M. Michel and H.J. Watzke, Food goes nano—new horizons for food structure research. In: Food Colloids Biopolymers and Materials, edited by E. Dickinson and T. van Vliet (Royal Society of Chemistry 2003), pp. 3–13.

  6. D. Figeys and D. Pinto, Lab-on-a-chip: a revolution in biological and medical sciences, Anal Chem 72(9), 330A–335A (2000).

    Article  CAS  Google Scholar 

  7. Z.D. Sandlin, M. Shou, J.G. Shackman and R.T. Kennedy, Microfluidic electrophoresis chip coupled to microdialysis for in vivo monitoring of amino acid neurotransmitters, Anal Chem 77, 7702–7708 (2005).

    Article  CAS  Google Scholar 

  8. S. Eyal and S.R. Quake, Velocity-independent microfluidic flow cytometry, Electrophoresis 23, 2653–2657 (2002).

    Article  CAS  Google Scholar 

  9. M.C. Mitchell, V. Spikmans and A.J. deMello, Microchip-based synthesis and analysis: control of multicomponent reaction products and intermediates, Analyst 126, 24–27 (2001).

    Article  CAS  Google Scholar 

  10. L. Bousse, Whole cell biosensors, Sens Actuators B Chem 34, 270–275 (1996).

    Article  Google Scholar 

  11. M.B. Gu, R.J. Mitchell and B.C. Kim, Whole-cell based biosensors for environmental biomonitoring and application, Adv Biochem Eng Biotechnol 87, 269–305 (2004).

    CAS  Google Scholar 

  12. T.M. Pearce, J.A. Wilson, S.G. Oakes, S.Y. Chiu and J.C. Williams, Integrated microelectrode array and microfluidics for temperature clamp of sensory neurons in culture, Lab Chip 5, 97–101 (2005).

    Article  CAS  Google Scholar 

  13. E.T. Lagally, J.R. Scherer, R.G. Blazej, N.M. Toriello, B.A. Diep, M. Ramchandani, G.F. Sensabaugh, L.W. Riley and R.A. Mathies, Integrated portable genetic analysis microsystem for pathogen/infectious disease detection, Anal Chem 76, 3162–3170 (2004).

    Article  CAS  Google Scholar 

  14. R.G. Blazej, P. Kumaresan and R.A. Mathies, Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing, Proc Natl Acad Sci U S A 103, 7240–7245 (2006).

    Article  CAS  Google Scholar 

  15. J. Gao, X.F. Yin and Z.L. Fang, Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip, Lab Chip 4, 47–52 (2004).

    Article  CAS  Google Scholar 

  16. A.M. Taylor, S.W. Rhee and N.L. Jeon, Microfluidic chambers for cell migration and neuroscience research, Methods Mol Biol 321, 167–177 (2006).

    CAS  Google Scholar 

  17. P.S. Dittrich and A. Manz, Lab-on-a-chip: microfluidics in drug discovery, Nat Rev Drug Discov 5, 210–218 (2006).

    Article  CAS  Google Scholar 

  18. A. Tourovskaia, X. Figueroa-Masot and A. Folch, Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies, Lab Chip 5, 14–19 (2005).

    Article  CAS  Google Scholar 

  19. A.M. Taylor, S.W. Rhee, C.H. Tu, D.H. Cribbs, C.W. Cotman and N.L. Jeon, Microfluidic multicompartment device for neuroscience research, Langmuir 19, 1551–1556 (2003).

    Article  CAS  Google Scholar 

  20. J.W. Park, B. Vahidi, A.M. Taylor, S.W. Rhee and N.L. Jeon, Microfluidic culture platform for neuroscience research, Nature Protocols 1, 2128–2136 (2006).

    Article  CAS  Google Scholar 

  21. D.D. Cunningham, Fluidics and sample handling in clinical chemical analysis, Anal Chim Acta 429, 1–18 (2001).

    Article  CAS  Google Scholar 

  22. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam and B.H. Weigl, Microfluidic diagnostic technologies for global public health, Nature 442, 412–418 (2006).

    Article  CAS  Google Scholar 

  23. N.R. Scott, Nanotechnology and animal health, Rev Sci Tech OIE 24, 425–432 (2005).

    CAS  Google Scholar 

  24. A.E. Kamholz, E.A. Schilling and P. Yager, Optical measurement of transverse molecular diffusion in a microchannel, Biophys J 80, 1967–1972 (2001).

    CAS  Google Scholar 

  25. N. McLoughlin, S.L. Lee and G. Hähner, Simultaneous determination of density and viscosity of liquids based on resonance curves of uncalibrated microcantilevers, Appl Phys Lett 89, 184106 (2006).

    Article  CAS  Google Scholar 

  26. K. Macounova, C.R. Cabrera, M.R. Holl and P. Yager, Generation of natural pH gradients in microfluidic channels for use in isoelectric focusing, Anal Chem 72, 3745–3751 (2000).

    Article  CAS  Google Scholar 

  27. M.B. Kerby, R.S. Legge and A. Tripathi, measurements of kinetic parameters in a microfluidic reactor, Anal Chem 78, 8273–8280 (2006).

    Article  CAS  Google Scholar 

  28. M. Ikeda, N. Yamaguchi, K. Tani and M. Nasu, Rapid and simple detection of food poisoning bacteria by bead assay with a microfluidic chip-based system, J Microbiol Meth 67, 241–247 (2006).

    Article  CAS  Google Scholar 

  29. P.P. Banada, Y.S. Liu, L. Yang, R. Bashir and A.K. Bhunia, Performance evaluation of a low conductive growth medium (LCGM) for growth of healthy and stressed Listeria monocytogenes and other common bacterial species, Int J Food Microbiol 111, 12–20 (2006).

    Article  CAS  Google Scholar 

  30. I.I. Leonte, G. Sehra, M. Cole, P. Hesketh and J.W. Gardner, Taste sensors utilizing high-frequency SH-SAW devices, Sensor Actuat B-Chem 118, 349–355 (2006).

    Article  CAS  Google Scholar 

  31. P. Walstra, Physical Chemistry of Foods (Marcel Dekker, 2003) pp. 397 (chap 11).

  32. D. Weaire and S. Hutzler, The Physics of Foams (Oxford University Press 1999).

  33. P.G. De Gennes, F. Brochard-Wyart and D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York 2004).

    Google Scholar 

  34. M. Wautelet, Scaling laws in the macro-, micro- and nanoworlds, Eur J Phys 22, 601–611 (2001).

    Article  Google Scholar 

  35. A.M. Gañán Calvo and J.M. Gordillo, Perfectly monodisperse microbubbling by capillary flow focusing, Phys Rev Lett 87 (27), 274501 (2001).

    Article  CAS  Google Scholar 

  36. C. Rands, B.W. Webb and D. Maynes, Characterization of transition to turbulence in microchannels, Int J Heat Mass Tran 49, 2924–2930 (2006).

    Article  Google Scholar 

  37. P. Tabeling, Some basic problems of Microfluidics, Proc. 14th Conference on Fluid Dynamics, Adelaide, Australia. http://www.mmn.espci.fr/publications.php) (2001).

  38. J.D. Tice, A.D. Lyon and R.F. Ismagilov, Effects of viscosity on droplet formation and mixing in microfluidic channels, Anal Chim Acta 507, 73–77 (2004).

    Article  CAS  Google Scholar 

  39. T. Cubaud and C.M. Ho, Transport of bubbles in square microchannels, Phys Fluids 16, 4575–4585 (2004).

    Article  CAS  Google Scholar 

  40. J.B. Knight, A. Vishwanath, J.P. Brody and R.H. Austin, Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds, Phys Rev Lett 80, 3863–3866 (1998).

    Article  CAS  Google Scholar 

  41. J.D. Tice, H. Song, A.D. Lyon and R.F. Ismagilov, Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the Capillary numbers, Langmuir 19, 9127–9133 (2003).

    Article  CAS  Google Scholar 

  42. D.R. Link, S.L. Anna, D.A. Weitz and H.A. Stone, Geometrically mediated breakup of drops in microfluidic devices, Phys Rev Lett 92, 54503 (2004).

    Article  CAS  Google Scholar 

  43. S.L. Anna, N. Bontoux and H.A. Stone, Formation of dispersions using “flow focusing” in microchannels, Appl Phys Lett 82, 364–366 (2003).

    Article  CAS  Google Scholar 

  44. B.L. Walther, P. Walkenström and A.M. Hermansson, Formation of shaped drops in a fast continuous flow process, J Colloid Interface Sci 270, 195–204 (2004).

    Article  CAS  Google Scholar 

  45. D. Erickson, Towards numerical prototyping of labs-on-chip: modeling for integrated microfluidic devices, Microfluid Nanofluid 1, 301–318 (2005).

    Article  CAS  Google Scholar 

  46. S. Quake and A. Scherer, From micro- to nano-fabrication with soft materials, Science 290, 1536–1540 (2000).

    Article  CAS  Google Scholar 

  47. K. Efimenko, W.E. Wallace and J. Genzer, Surface modification of sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultravioletozone treatment, J Colloid Interface Sci 254, 306–315 (2002).

    Article  CAS  Google Scholar 

  48. T. Chován and A. Guttman, Microfabricated devices in biotechnology and biochemical processing, Trends Biotechnol 20, 116–122 (2002).

    Article  Google Scholar 

  49. Y. Xia and G.M. Whitesides, Soft lithography, Annu Rev Mater Sci 28, 153–184 (1998).

    Article  CAS  Google Scholar 

  50. J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J.A. Schueller and G.M. Whitesides, Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis 21, 27–40 (2000).

    Article  CAS  Google Scholar 

  51. J.A. Rogers, K.E. Paul, R.J. Jackman and G.M. Whitesides, Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field, Appl Phys Lett 70, 2658–2660 (1997).

    Article  CAS  Google Scholar 

  52. Y. Xia, E. Kim and G.M. Whitesides, Micromolding in capillaries: Applications in material science, J Am Chem Soc 118, 5722–5731 (1996).

    Article  Google Scholar 

  53. X.M. Zhao, Y. Xia and G.M. Whitesides, Fabrication of three-dimensional micro-structures: Microtransfer molding, Adv Mater 8, 837–840 (1996).

    Article  CAS  Google Scholar 

  54. J.H. Lee, C.H. Kim, K.M. Ho and K. Constant, Two-polymer microtransfer molding for highly layered microstructures, Adv Mater 17, 2485–2488 (2005).

    Article  CAS  Google Scholar 

  55. Y. Xia, J.J. McClelland, R. Gupta, D. Qin, X.M. Zhao, L.L. Sohn, R.J. Celotta and G.M. Whitesides, Replica molding using polymeric materials: a practical step toward nanomanufacturing, Adv Mater 9, 147–149 (1997).

    Article  CAS  Google Scholar 

  56. E. Kim, Y. Xia, X.M. Zhao and G.M. Whitesides, Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers, Adv Mater 9, 651–654 (1997).

    Article  CAS  Google Scholar 

  57. M.A. Roberts, J.S. Rossier, P. Bercier and H. Girault, UV laser machined polymer substrates for the development of microdiagnostic systems, Anal Chem 69, 2035–2042 (1997).

    Article  CAS  Google Scholar 

  58. R. Srinivasan, Ablation of polyimide films by pulsed (ns) ultraviolet and infrared (9.17 μm) lasers, Appl Phys A-mater 56, 417–423 (1993).

    Article  Google Scholar 

  59. T. Lippert and J.T. Dickinson, Chemical and spectroscopic aspects of polymer ablation: Special features and novel directions, Chem Rev 103, 453–485 (2003).

    Article  CAS  Google Scholar 

  60. K. Kendall, Adhesion: molecules and mechanics, Science 263, 1720–1725 (1994).

    Article  CAS  Google Scholar 

  61. T. Cubaud, U. Ulmanella and C.M. Ho, Two-phase flow in microchannels with surface modifications, Fluid Dyn Res, 38, 772–786 (2006).

    Article  Google Scholar 

  62. R. Dreyfus, P. Tabeling and H. Willaime, Ordered and disordered patterns in two-phase flows in microchannels, Phys Rev Lett 90 (14), 144505 (2003).

    Article  CAS  Google Scholar 

  63. T. Nisisako, T. Torii and T. Higuchi, Preparation of picoliter-sized reaction/analysis chambers for droplet-based chemical and biochemical systems, Micro Total Analysis Systems 1, 362–364 (2002).

    CAS  Google Scholar 

  64. T. Nisisako, T. Torii and T. Higuchi, Droplet formation in a microchannel network, Lab Chip 2, 24–26 (2002).

    Article  CAS  Google Scholar 

  65. T. Nisisako, T. Torii and T. Higuchi, Rapid preparation of monodispersed droplets with confluent laminar flow, IEEE Int. Conf. Micro Electro Mech Syst 16th, 331–334 (2003).

  66. J. Lahann, S. Mitragotri, T.N. Tran, H. Kaido, J. Sundaram, I.S. Choi, S. Hoffer, G.A. Somorjai and R. Langer, A reversibly switching surface, Science 299, 371–374 (2003).

    Article  CAS  Google Scholar 

  67. J. Deval, T.A. Umali, E.H. Lan, B. Dunn and C.M. Ho, Reconfigurable hydrophobic/hydrophilic surfaces in microelectromechanical systems (MEMS), J Micromech Microeng 14, 91–95 (2004).

    Article  CAS  Google Scholar 

  68. D.T. Chen, E.R. Weeks, J.C. Crocker, M.F. Islam, R. Verma, J. Gruber, A.J. Levine, T.C. Lubensky and A.G. Yodh, Rheological microscopy: local mechanical properties from microrheology, Phys Rev Lett 90 (10), 108301 (2003).

    Article  CAS  Google Scholar 

  69. K.W. Oh and C.H. Ahn, A review of microvalves, J Micromech Microeng 16, R13–R39 (2006).

    Article  Google Scholar 

  70. N.T. Nguyen, X.Y. Huang and K.C. Toh, MEMS—micropumps: a review, J Fluids Eng 124, 384–392 (2002).

    Article  Google Scholar 

  71. L. Ren and D. Li, Theoretical studies of microfluidic dispensing processes, J Colloid Interface Sci 254, 384–395 (2002).

    Article  CAS  Google Scholar 

  72. W.K. Choia, E. Lebrasseur, M.I. Al-Haq, H. Tsuchiya, T. Torii, H. Yamazaki, E. Shinohara and T. Higuchi, Nano-liter size droplet dispenser using electrostatic manipulation technique, Sensor Actuat A-Phys 136, 484–490 (2007).

    Article  CAS  Google Scholar 

  73. K.D. Wise, Integrated sensors, MEMS, and microsystems: reflections on a fantastic voyage, Sensor Actuat A-Phys 136, 39–50 (2007).

    Article  CAS  Google Scholar 

  74. R.J. Townsend, M. Hill, N.R. Harris, N.M. White, S.P. Beeby and R.J.K. Wood, Fluid modelling of microfluidic separator channels, Sensor Actuat B-Chem 111–112, 455–462 (2005).

    Article  CAS  Google Scholar 

  75. Y. Zhu, A. Bui, H. Jin, S. Nahavandi, E.C. Harvey and I.D. Sutalo, Thermal modeling of a microheater in a microchannel chip., Proc. SPIE., 6036, 467–475 (2006) (DOI 10.1117/12.660972).

  76. I. Wyzkiewicz, I. Grabowska, M. Chudy, Z. Brzozka, M. Jakubowska, T. Wisniewski and A. Dybko, Self-regulating heater for microfluidic reactors, Sensor Actuat B-Chem 114, 893–896 (2006).

    Article  CAS  Google Scholar 

  77. H. Karbstein and H. Schubert, Developments in the continuous mechanical production of oil-in-water macro-emulsions, Chem Eng Process 34, 205–211 (1995).

    Article  CAS  Google Scholar 

  78. T. Kawakatsu, G. Trägårdh and C. Trägårdh, Production of W/O/W emulsions and S/O/W pectin microcapsules by microchannel emulsification, Colloid Surface A, 189, 257–264 (2001).

    Article  CAS  Google Scholar 

  79. I. Kobayashi, M. Nakajima, H. Nabetani, Y. Kikuchi, A. Shohno and K. Satoh, Preparation of micron-scale monodisperse oil-in-water microspheres by microchannel emulsification, J Am Oil Chem Soc 78, 797–802 (2001).

    Article  CAS  Google Scholar 

  80. E. Van der Zwan, K. Schroën, K. Van Dijke and R.M. Boom, Visualization of droplet break-up in pre-mix membrane emulsification using microfluidic devices, Colloid Surface A 277, 223–229 (2006).

    Article  CAS  Google Scholar 

  81. T. Thorsen, W.R. Roberts, F.H. Arnold and S.R. Quake, Dynamic pattern formation in a vesicle-generating microfluidic device, Phys Rev Lett 86, 4163–4166 (2001).

    Article  CAS  Google Scholar 

  82. S. Van der Graaf, T. Nisisako, C.G.P.H. Schroen, R.G.M. van der Sman and R.M. Boom, Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel, Langmuir 22, 4144–4152 (2006).

    Article  CAS  Google Scholar 

  83. S. Okushima, T. Nisisako, T. Torii and T. Higuchi, Controlled production of monodisperse double emulsions by two-step droplet break-up in microfluidic devices, Langmuir 20, 9905–9908 (2004).

    Article  CAS  Google Scholar 

  84. Q.Y. Xu and M. Nakajima, The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device, Appl Phys Lett 85, 3726–3728 (2004).

    Article  CAS  Google Scholar 

  85. J.M. Gordillo, Z. Cheng, A. Gañán Calvo, M. Márquez and D.A. Weitz, A new device for the generation of microbubbles, Phys Fluids 16, 2828–2834 (2004).

    Article  CAS  Google Scholar 

  86. O. Skurtys, P. Bouchon and J.M. Aguilera, Formation of bubbles and foams in gelatine solutions within a vertical glass tube, Food Hydrocolloid (2007).

  87. C. Cramer, P. Fischer and E.J. Windhab, Drop formation in a co-flowing ambient fluid, Chem Eng Sci 59, 3045–3058 (2004).

    Article  CAS  Google Scholar 

  88. S. Sugiura, M. Nakajima and M. Seki, Effect of channel structure on microchannel emulsification, Langmuir 18, 5708–5712 (2002).

    Article  CAS  Google Scholar 

  89. S. Sugiura, M. Nakajima, S. Iwamoto and M. Seki, Interfacial tension driven monodispersed droplet formation from microfabricated channel array, Langmuir 17, 5562–5566 (2001).

    Article  CAS  Google Scholar 

  90. A.M. Gañán Calvo, Perfectly monodisperse microbubbling by capillary flow focusing: an alternate physical description and universal scaling, Phys Rev E 69, 27301 (2004).

    Article  CAS  Google Scholar 

  91. A.J. De Mello, Control and detection of chemical reactions in microfluidic systems, Nature 442, 394–402 (2006).

    Article  CAS  Google Scholar 

  92. R.D. Chambers, M.A. Fox, D. Holling, T. Nakano, T. Okazoe and G. Sandford, Versatile thin-film gas-liquid multi-channel microreactors for effective scale-out, Lab Chip 5, 191–198 (2005).

    Article  CAS  Google Scholar 

  93. N.T. Nguyen and Z. Wu, Micromixers—a review, J Micromech Microeng 15, R1–R16 (2005).

    Article  Google Scholar 

  94. D. Gobby, P. Angeli and A. Gavriilidis, Mixing characteristics of T-type microfluidic mixers, J Micromech Microeng 11, 126–132 (2001).

    Article  Google Scholar 

  95. G.M. Walker, M.S. Ozers and D.J. Beebe, Cell infection within a microfluidic device using virus gradients, Sensor Actuat B-Chem 98, 347–355 (2004).

    Article  CAS  Google Scholar 

  96. V. Mengeaud, J. Josserand and H.H. Girault, Mixing processes in a zigzag microchannel: finite element simulations and optical study, Anal Chem 74, 4279–4286 (2002).

    Article  CAS  Google Scholar 

  97. R.A. Vijayendran, K.M. Motsegood, D.J. Beebe and D.E. Leckband, Evaluation of a three-dimensional micromixer in a surface-based biosensor, Langmuir 19, 1824–1828 (2003).

    Article  CAS  Google Scholar 

  98. A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezic, H.A. Stone and G.M. Whitesides, Chaotic mixer for microchannels, Science 295, 647–651 (2002).

    Article  CAS  Google Scholar 

  99. A.A. Deshmukh, D. Liepmann and A.P. Pisano, Characterization of a micro-mixing, pumping, and valving system., Proc. Transducers, 11th Int. Conf. on Solid-State Sensors and Actuators, Munich, Germany, 779–782 (2001).

  100. T. Fujii, Y. Sando, K. Higashino and Y. Fujii, A plug and play microfluidic device, Lab Chip 3, 193–197 (2003).

    Article  CAS  Google Scholar 

  101. F. Okkels and P. Tabeling, Spatiotemporal resonances in mixing of open viscous fluids, Phys Rev Lett 92, 38301 (2004).

    Article  CAS  Google Scholar 

  102. X. Niu and Y.K. Lee, Efficient spatial-temporal chaotic mixing in microchannels, J Micromech Microeng 13, 454–462 (2003).

    Article  Google Scholar 

  103. E.M. Chang, A.P. Alivisatos and R.A. Mathies. High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets, J Am Chem Soc 127, 13854–13861 (2005).

    Article  CAS  Google Scholar 

  104. H. Mao, T. Yang and P.S. Cremer. A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements, J Am Chem Soc 124, 4432–4435 (2002).

    Article  CAS  Google Scholar 

  105. D.J. Harrison, K. Fluri, K. Seiler, Z.H. Fan, C.S. Effenhauser and A. Manz. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip, Science 261, 895–897 (1993).

    Article  CAS  Google Scholar 

  106. F.K. Balagadde, L.C. You, C.L. Hansen, F.H. Arnold and S.R. Quake. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat, Science 309, 137–140 (2005).

    Article  CAS  Google Scholar 

  107. L. Birch, C.L. Archard, H.C. Parkes and D.G. McDowell. Evaluation of LabChipTM technology for GMO analysis in food, Food Control 12, 535–540 (2001).

    Article  CAS  Google Scholar 

  108. H. Craighead. Future lab-on-a-chip technologies for interrogating individual molecules, Nature 442, 387–393 (2006).

    Article  CAS  Google Scholar 

  109. P.C. Vasavada. Rapid methods and automation in dairy microbiology, J Dairy Sci 76, 3101–3113 (1993).

    Article  CAS  Google Scholar 

  110. G.B.J. Dubelaar and R.R. Jonker. Flow cytometry as a tool for the study of phytoplankton, Sci Mar 64, 155–156 (2000).

    Google Scholar 

  111. C.P.D. Brussaard, D. Marie and G. Bratbak. Flow cytometric detection of viruses, J Virol 85, 175–182 (2000).

    CAS  Google Scholar 

  112. T.S. Gunasekera, P.V. Attfield and D.A. Veal. A Flow cytometry method for rapid detection and enumeration of total bacteria in milk, Appl Environ Microb 66, 1228–1232 (2000).

    Article  CAS  Google Scholar 

  113. P.S. Chen and C.S. Li. Real-time monitoring for bioaerosols-flow cytometry, Analyst 132, 14–16 (2007).

    Article  CAS  Google Scholar 

  114. T.S. Gunasekera, D.A. Veal and P.V. Attfield. Potential for broad applications of flow cytometry and fluorescence techniques in microbiological and somatic cell analyses of milk, Food Microbiol 85, 269–279 (2003).

    Article  CAS  Google Scholar 

  115. S. Flint, J.L. Drocourt, K. Walker, B. Stevenson, M. Dwyer, I. Clarke and D. McGill. A rapid, two-hour method for the enumeration of total viable bacteria in samples from commercial milk powder and whey protein concentrate powder manufacturing plants, Int Dairy J 16, 379–384 (2006).

    Article  CAS  Google Scholar 

  116. Y.C. Tung, M. Zhang, C.T. Lin, K. Kurabayashi and S.J. Skerlos. PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes, Sensor Actuat B-Chem 98, 356–367 (2004).

    Article  CAS  Google Scholar 

  117. J. Novak, I. Georgakoudi, X. Wei, A. Prossin and C.P. Lin. In vivo flow cytometer for real-time detection and quantification of circulating cells, Opt Lett 29, 77–79 (2004).

    Article  CAS  Google Scholar 

  118. C.F. Zhong, J.Y. Ye, T.B. Norris, T. Thomas, A. Myc, A.U. Bielinska and J.R. Baker. Quantitative two-photon flow cytometry., Quantum Electronics and Laser Science Conference, 2005. QELS ’05, 3, 1663–1665 (2005).

    Article  Google Scholar 

  119. J. El-Ali, P.K. Sorger and K.F. Jensen, Cells on chips, Nature 442, 403–411 (2006).

    Article  CAS  Google Scholar 

  120. R.H. Liu, J. Yang, R. Lenigk, J. Bonanno and P. Grodzinski. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection, Anal Chem 86, 1824–1831 (2004).

    Article  CAS  Google Scholar 

  121. D. Trau, T.M.H. Lee, A.I.K. Lao, R. Lenigk, I.M. Hsing, N.Y. Ip, M.C. Carles and N.J. Sucher. Genotyping on a complementary metal oxide semiconductor silicon polymerase chain reaction chip with integrated DNA microarray, Anal Chem 74, 3168–3173 (2002).

    Article  CAS  Google Scholar 

  122. R. Pal, M. Yang, R. Lin, B.N. Johnson, N. Srivastava, S.Z. Razzacki, K.J. Chomistek, D.C. Heldsinger, R.M. Haque, V.M. Ugaz, P.K. Thwar, Z. Chen, K. Alfano, M.B. Yim, M. Krishnan, A.O. Fuller, R.G. Larson, D.T. Burked and M.A. Burns. An integrated microfluidic device for influenza and other genetic analyses, Lab Chip 5, 1024–1032 (2005).

    Article  CAS  Google Scholar 

  123. E.T. Lagally, J.R. Scherer, R.G. Blazej, N.M. Toriello, B.A. Diep, M. Ramchandani, G.F. Sensabaugh, L.W. Riley and R.A. Mathies, Integrated portable genetic analysis microsystem for pathogen / infectious disease detection, Anal Chem 76, 3162–3170 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge financial support from Fondecyt project 1060713.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Skurtys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skurtys, O., Aguilera, J.M. Applications of Microfluidic Devices in Food Engineering. Food Biophysics 3, 1–15 (2008). https://doi.org/10.1007/s11483-007-9043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-007-9043-6

Keywords

Navigation