Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 4/2011

01.04.2011 | Original Article

Spinal cord direct current stimulation: finite element analysis of the electric field and current density

verfasst von: Gabriel R. Hernández-Labrado, José L. Polo, Elisa López-Dolado, Jorge E. Collazos-Castro

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 4/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Applied low-intensity direct current (DC) stimulates and directs axonal growth in models of spinal cord injury (SCI) and may have therapeutic value in humans. Using higher electric strengths will probably increase the beneficial effects, but this faces the risk of tissue damage by electricity or toxic reactions at the electrode–tissue interface. To inform the optimisation of DC-based therapeutics, we developed a finite element model (FEM) of the human cervical spine and calculated the electric fields (EFs) and current densities produced by electrodes of different size, geometry and location. The presence of SCI was also considered. Three disc electrodes placed outside the spine produced low-intensity, uneven EFs, whereas the EFs generated by the same electrodes located epidurally were about three times more intense. Changes in electrical conductivity after SCI had little effect on the EF magnitudes. Uniformly distributed EFs were obtained with five disc electrodes placed around the dura mater, but not with a paddle-type electrode placed in the dorsal epidural space. Replacing the five disc electrodes by a single, large band electrode yielded EFs > 5 mV/mm with relatively low current density (2.5 μA/mm2) applied. With further optimisation, epidural, single-band electrodes might enhance the effectiveness of spinal cord DC stimulation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Baumann SB, Wozny DR, Kelly SK, Meno FM (1997) The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans Biomed Eng 44:220–223PubMedCrossRef Baumann SB, Wozny DR, Kelly SK, Meno FM (1997) The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans Biomed Eng 44:220–223PubMedCrossRef
2.
Zurück zum Zitat Borgens RB (1999) Electrically mediated regeneration and guidance of adult mammalian spinal axons into polymeric channels. Neuroscience 91:251–264PubMedCrossRef Borgens RB (1999) Electrically mediated regeneration and guidance of adult mammalian spinal axons into polymeric channels. Neuroscience 91:251–264PubMedCrossRef
3.
Zurück zum Zitat Borgens RB, Blight AR, Murphy DJ, Stewart L (1986) Transected dorsal column axons within the guinea pig spinal cord regenerate in the presence of an applied electric field. J Comp Neurol 250:168–180PubMedCrossRef Borgens RB, Blight AR, Murphy DJ, Stewart L (1986) Transected dorsal column axons within the guinea pig spinal cord regenerate in the presence of an applied electric field. J Comp Neurol 250:168–180PubMedCrossRef
4.
Zurück zum Zitat Borgens RB, Toombs JP, Blight AR, McGinnis ME, Bauer MS, Widmer WR, Cook JR Jr (1993) Effects of applied electric fields on clinical cases of complete paraplegia in dogs. J Restor Neurol Neurosci 5:305–322 Borgens RB, Toombs JP, Blight AR, McGinnis ME, Bauer MS, Widmer WR, Cook JR Jr (1993) Effects of applied electric fields on clinical cases of complete paraplegia in dogs. J Restor Neurol Neurosci 5:305–322
5.
Zurück zum Zitat Bunge R, Puckett W, Hiester E (1997) Observations on the pathology of several types of human spinal cord injury, with emphasis on the astrocyte response to penetrating injuries. Adv Neurol 72:305–315PubMed Bunge R, Puckett W, Hiester E (1997) Observations on the pathology of several types of human spinal cord injury, with emphasis on the astrocyte response to penetrating injuries. Adv Neurol 72:305–315PubMed
6.
Zurück zum Zitat Coburn B (1980) Electrical stimulation of the spinal cord: two-dimensional finite element analysis with particular reference to epidural electrodes. Med Biol Eng Comput 18:573–584PubMedCrossRef Coburn B (1980) Electrical stimulation of the spinal cord: two-dimensional finite element analysis with particular reference to epidural electrodes. Med Biol Eng Comput 18:573–584PubMedCrossRef
7.
Zurück zum Zitat Coburn B (1985) A theoretical study of epidural electrical stimulation of the spinal cord—part II: effects on long myelinated fibers. IEEE Trans Biomed Eng BME 32:978–986CrossRef Coburn B (1985) A theoretical study of epidural electrical stimulation of the spinal cord—part II: effects on long myelinated fibers. IEEE Trans Biomed Eng BME 32:978–986CrossRef
8.
Zurück zum Zitat Coburn B, Sin WK (1983) Electrical stimulation of the spinal cord: a further analysis relating to anatomical factors and tissue properties. Med Biol Eng Comput 21:264–269PubMedCrossRef Coburn B, Sin WK (1983) Electrical stimulation of the spinal cord: a further analysis relating to anatomical factors and tissue properties. Med Biol Eng Comput 21:264–269PubMedCrossRef
9.
Zurück zum Zitat Coburn B, Sin WK (1985) A theoretical study of epidural electrical stimulation of the spinal cord—part I: finite element analysis of stimulus fields. IEEE Trans Biomed Eng BME 32:971–977CrossRef Coburn B, Sin WK (1985) A theoretical study of epidural electrical stimulation of the spinal cord—part I: finite element analysis of stimulus fields. IEEE Trans Biomed Eng BME 32:971–977CrossRef
10.
Zurück zum Zitat Collazos-Castro JE, Muñetón-Gómez V, Nieto-Sampedro M (2005) Olfactory glia transplantation into cervical spinal cord contusion injuries. J Neurosurg Spine 3:308–317PubMedCrossRef Collazos-Castro JE, Muñetón-Gómez V, Nieto-Sampedro M (2005) Olfactory glia transplantation into cervical spinal cord contusion injuries. J Neurosurg Spine 3:308–317PubMedCrossRef
11.
Zurück zum Zitat Collazos-Castro JE, Soto VM, Gutierrez-Davila M, Nieto-Sampedro M (2005) Motoneuron loss associated with chronic locomotion impairments after spinal cord contusion. J Neurotrauma 22:544–558PubMedCrossRef Collazos-Castro JE, Soto VM, Gutierrez-Davila M, Nieto-Sampedro M (2005) Motoneuron loss associated with chronic locomotion impairments after spinal cord contusion. J Neurotrauma 22:544–558PubMedCrossRef
12.
Zurück zum Zitat Collazos-Castro JE, Polo JL, Hernández-Labrado GR, Padial-Cañete V, García-Rama C (2010) Bioelectrochemical control of neural cell development on conducting polymers. Biomaterials 31:9244–9255PubMedCrossRef Collazos-Castro JE, Polo JL, Hernández-Labrado GR, Padial-Cañete V, García-Rama C (2010) Bioelectrochemical control of neural cell development on conducting polymers. Biomaterials 31:9244–9255PubMedCrossRef
13.
Zurück zum Zitat Dam-Hieu P, Magro E, Seizeur R, Simon A, Quinio B (2010) Cervical cord compression due to delayed scarring around epidural electrodes used in spinal cord stimulation. J Neurosurg Spine 12:409–412PubMedCrossRef Dam-Hieu P, Magro E, Seizeur R, Simon A, Quinio B (2010) Cervical cord compression due to delayed scarring around epidural electrodes used in spinal cord stimulation. J Neurosurg Spine 12:409–412PubMedCrossRef
14.
Zurück zum Zitat Fehlings MG, Tator CH, Linden RD (1988) The effect of direct-current field on recovery from experimental spinal cord injury. J Neurosurg 68:781–792PubMedCrossRef Fehlings MG, Tator CH, Linden RD (1988) The effect of direct-current field on recovery from experimental spinal cord injury. J Neurosurg 68:781–792PubMedCrossRef
15.
Zurück zum Zitat Foletti A, Durrer A, Buchser E (2007) Neurostimulation technology for the treatment of chronic pain: a focus on spinal cord stimulation. Expert Rev Med Devices 4:201–214PubMedCrossRef Foletti A, Durrer A, Buchser E (2007) Neurostimulation technology for the treatment of chronic pain: a focus on spinal cord stimulation. Expert Rev Med Devices 4:201–214PubMedCrossRef
16.
Zurück zum Zitat Fountas KN, Kapsalaki EZ, Jackson J, Vogel RL, Robinson JS Jr (1998) Cervical spinal cord—smaller than considered? Spine 23:1513–1516PubMedCrossRef Fountas KN, Kapsalaki EZ, Jackson J, Vogel RL, Robinson JS Jr (1998) Cervical spinal cord—smaller than considered? Spine 23:1513–1516PubMedCrossRef
17.
Zurück zum Zitat Geddes LA, Baker LE (1967) The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist. Med Biolog Eng 5:271–293CrossRef Geddes LA, Baker LE (1967) The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist. Med Biolog Eng 5:271–293CrossRef
18.
Zurück zum Zitat Gilad I, Nissan M (1985) Sagittal evaluation of elemental geometrical dimensions of human vertebrae. J Anat 143:115–120PubMed Gilad I, Nissan M (1985) Sagittal evaluation of elemental geometrical dimensions of human vertebrae. J Anat 143:115–120PubMed
19.
Zurück zum Zitat Green RA, Lovell NH, Wallace GG, Poole-Warren LA (2008) Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 29:3393–3399PubMedCrossRef Green RA, Lovell NH, Wallace GG, Poole-Warren LA (2008) Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 29:3393–3399PubMedCrossRef
20.
Zurück zum Zitat Greenberg MS (2010) Handbook of neurosurgery, 7th edn. Thieme Publishers, New York Greenberg MS (2010) Handbook of neurosurgery, 7th edn. Thieme Publishers, New York
21.
Zurück zum Zitat Heo C, Yoo J, Lee S, Jo A, Jung S, Yoo H, Lee YH, Suh M (2011) The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes. Biomaterials 32:19–27PubMedCrossRef Heo C, Yoo J, Lee S, Jo A, Jung S, Yoo H, Lee YH, Suh M (2011) The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes. Biomaterials 32:19–27PubMedCrossRef
22.
Zurück zum Zitat Hogan Q (1996) Epidural anatomy examined by cryomicrotome section. Influence of age, vertebral level, and disease. Reg Anesth 21(5):395–406PubMed Hogan Q (1996) Epidural anatomy examined by cryomicrotome section. Influence of age, vertebral level, and disease. Reg Anesth 21(5):395–406PubMed
23.
Zurück zum Zitat Hurlbert RJ, Tator CH (1994) Characterization of longitudinal field gradients from electrical stimulation in the normal and injured rodent spinal cord. Neurosurgery 34:471–483PubMedCrossRef Hurlbert RJ, Tator CH (1994) Characterization of longitudinal field gradients from electrical stimulation in the normal and injured rodent spinal cord. Neurosurgery 34:471–483PubMedCrossRef
24.
Zurück zum Zitat Hurlbert RJ, Tator CH, Theriault E (1993) Dose-response study of the pathological effects of chronically applied direct current stimulation on the normal rat. J Neurosurg 79:905–916PubMedCrossRef Hurlbert RJ, Tator CH, Theriault E (1993) Dose-response study of the pathological effects of chronically applied direct current stimulation on the normal rat. J Neurosurg 79:905–916PubMedCrossRef
25.
Zurück zum Zitat Jackson A, Yao H, Brown M, GuW Yong (2006) Anisotropic ion diffusivity in intervertebral disc: an electrical conductivity approach. Spine 31:2783–2789PubMedCrossRef Jackson A, Yao H, Brown M, GuW Yong (2006) Anisotropic ion diffusivity in intervertebral disc: an electrical conductivity approach. Spine 31:2783–2789PubMedCrossRef
26.
Zurück zum Zitat Khan T, Myklebust J, Swiontek T, Sayers S (1994) Electric field distribution within normal cat spinal cord. J Neurotrauma 11:567–572 Khan T, Myklebust J, Swiontek T, Sayers S (1994) Electric field distribution within normal cat spinal cord. J Neurotrauma 11:567–572
27.
Zurück zum Zitat Khan T, Myklebust J, Swiontek T, Sayers S, Dauzvardis M (1994) Electrical field distribution within the injured cat spinal cord: injury potentials and field distribution. J Neurotrauma 11:699–701PubMedCrossRef Khan T, Myklebust J, Swiontek T, Sayers S, Dauzvardis M (1994) Electrical field distribution within the injured cat spinal cord: injury potentials and field distribution. J Neurotrauma 11:699–701PubMedCrossRef
28.
Zurück zum Zitat Li XF, Dai LY (2009) Three-dimensional finite element model of the cervical spinal cord: preliminary results of injury mechanism analysis. Spine 34(11):1140–1147PubMedCrossRef Li XF, Dai LY (2009) Three-dimensional finite element model of the cervical spinal cord: preliminary results of injury mechanism analysis. Spine 34(11):1140–1147PubMedCrossRef
29.
Zurück zum Zitat McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85:943–978PubMedCrossRef McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85:943–978PubMedCrossRef
30.
Zurück zum Zitat Merril DR, Bikson M, Jefferys JG (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141:171–198CrossRef Merril DR, Bikson M, Jefferys JG (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141:171–198CrossRef
31.
Zurück zum Zitat Miklavčič D, Pavšelj N, Hart FX (2006) Electric properties of tissues. Wiley encyclopedia of biomedical engineering. Wiley, New York Miklavčič D, Pavšelj N, Hart FX (2006) Electric properties of tissues. Wiley encyclopedia of biomedical engineering. Wiley, New York
32.
Zurück zum Zitat Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527:633–639PubMedCrossRef Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527:633–639PubMedCrossRef
33.
Zurück zum Zitat Patel NB, Poo MM (1984) Perturbation of the direction of neurite growth by pulsed and focal electric fields. J Neurosci 4:2939–2947PubMed Patel NB, Poo MM (1984) Perturbation of the direction of neurite growth by pulsed and focal electric fields. J Neurosci 4:2939–2947PubMed
34.
Zurück zum Zitat Ramsey HJ (1959) Comparative morphology of fat in the epidural space. Am J Anat 105(9):219–232PubMedCrossRef Ramsey HJ (1959) Comparative morphology of fat in the epidural space. Am J Anat 105(9):219–232PubMedCrossRef
35.
Zurück zum Zitat Ranck JB, Be Merit SL (1965) The specific impedance of the dorsal columns of cat; an anisotropic medium. Exp Neurol 11:451–463PubMedCrossRef Ranck JB, Be Merit SL (1965) The specific impedance of the dorsal columns of cat; an anisotropic medium. Exp Neurol 11:451–463PubMedCrossRef
36.
Zurück zum Zitat Robinson KR, Cormie P (2008) Electric field effects on human spinal cord injury: is there a basis in the in vitro studies? Develop Neurobiol 68:274–280CrossRef Robinson KR, Cormie P (2008) Electric field effects on human spinal cord injury: is there a basis in the in vitro studies? Develop Neurobiol 68:274–280CrossRef
37.
Zurück zum Zitat Roeder E, Goldberg NH, Cohen MJ (1983) Modification of retrograde degeneration in transected spinal axons of the lamprey by applied DC current. J Neurosci 3:153–160 Roeder E, Goldberg NH, Cohen MJ (1983) Modification of retrograde degeneration in transected spinal axons of the lamprey by applied DC current. J Neurosci 3:153–160
38.
Zurück zum Zitat Runza M, Pietrabissa R, Mantero S, Albani A, Quaglini V, Contro R (1999) Lumbar dura mater biomechanics: experimental characterization and scanning electron microscopy observations. Anesth Analg 88:1317–1321PubMedCrossRef Runza M, Pietrabissa R, Mantero S, Albani A, Quaglini V, Contro R (1999) Lumbar dura mater biomechanics: experimental characterization and scanning electron microscopy observations. Anesth Analg 88:1317–1321PubMedCrossRef
39.
Zurück zum Zitat Shapiro S, Borgens R, Pascuzzi R, Karen R, Groff M, Purvines S, Rodgers RB, Hagy S, Nelson P (2005) Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial. J Neurosurg Spine 2:3–10PubMedCrossRef Shapiro S, Borgens R, Pascuzzi R, Karen R, Groff M, Purvines S, Rodgers RB, Hagy S, Nelson P (2005) Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial. J Neurosurg Spine 2:3–10PubMedCrossRef
40.
Zurück zum Zitat Strautman AF, Cork RJ, Robinson KR (1990) The distribution of free calcium in transected spinal axons and its modulation by applied electrical fields. J Neurosci 10:3564–3575PubMed Strautman AF, Cork RJ, Robinson KR (1990) The distribution of free calcium in transected spinal axons and its modulation by applied electrical fields. J Neurosci 10:3564–3575PubMed
41.
Zurück zum Zitat Struijk JJ, Holsheimer J, van Veen BK, Boom HBK (1991) Epidural spinal cord stimulation: calculation of field potentials with special reference to dorsal column nerve fibers. IEEE Trans Biomed Eng 38:104–110PubMedCrossRef Struijk JJ, Holsheimer J, van Veen BK, Boom HBK (1991) Epidural spinal cord stimulation: calculation of field potentials with special reference to dorsal column nerve fibers. IEEE Trans Biomed Eng 38:104–110PubMedCrossRef
42.
Zurück zum Zitat Struijk JJ, Holsheimer J, Barolat G, He J, Boom HBK (1993) Paresthesia thresholds in spinal cord stimulation: a comparison of theoretical results with clinical data. IEEE Trans Rehab Eng 1:101–108CrossRef Struijk JJ, Holsheimer J, Barolat G, He J, Boom HBK (1993) Paresthesia thresholds in spinal cord stimulation: a comparison of theoretical results with clinical data. IEEE Trans Rehab Eng 1:101–108CrossRef
43.
Zurück zum Zitat Swiontek TJ, Sances A Jr, Larson SJ, Ackmann JJ, Cusick JF, Meyer GA, Millar EA (1976) Spinal cord implant studies. IEEE Trans Biomed Eng BME 23:307–312CrossRef Swiontek TJ, Sances A Jr, Larson SJ, Ackmann JJ, Cusick JF, Meyer GA, Millar EA (1976) Spinal cord implant studies. IEEE Trans Biomed Eng BME 23:307–312CrossRef
44.
Zurück zum Zitat Swiontek TJ, Maiman D, Sances A, Myklebust J, Larson SJ, Hemmy D (1980) Effect of electrical current on temperature and pH in cerebellum and spinal cord. Surg Neurol 14:365–369PubMed Swiontek TJ, Maiman D, Sances A, Myklebust J, Larson SJ, Hemmy D (1980) Effect of electrical current on temperature and pH in cerebellum and spinal cord. Surg Neurol 14:365–369PubMed
45.
Zurück zum Zitat Testerman RL, Rise MT, Stypulkowski PH (2006) Electrical stimulation as therapy for neurological disorder. IEEE Eng Med Biol Mag 25:74–78PubMedCrossRef Testerman RL, Rise MT, Stypulkowski PH (2006) Electrical stimulation as therapy for neurological disorder. IEEE Eng Med Biol Mag 25:74–78PubMedCrossRef
46.
Zurück zum Zitat Tuszynski MH, Gabriel K, Gerhardt K, Szollar S (1999) Human spinal cord retains substantial structural mass in chronic stages after injury. J Neurotrauma 16:523–531PubMedCrossRef Tuszynski MH, Gabriel K, Gerhardt K, Szollar S (1999) Human spinal cord retains substantial structural mass in chronic stages after injury. J Neurotrauma 16:523–531PubMedCrossRef
47.
Zurück zum Zitat Volkmann J (2004) Deep brain stimulation for the treatment of Parkinson’s disease. J Clin Neurophysiol 21:6–17PubMedCrossRef Volkmann J (2004) Deep brain stimulation for the treatment of Parkinson’s disease. J Clin Neurophysiol 21:6–17PubMedCrossRef
48.
Zurück zum Zitat Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, Pascual-Leone A (2007) Transcranial direct current stimulation: a computer-based human model study. Neuroimage 35:1113–1124PubMedCrossRef Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, Pascual-Leone A (2007) Transcranial direct current stimulation: a computer-based human model study. Neuroimage 35:1113–1124PubMedCrossRef
49.
Zurück zum Zitat Wesselink WA, Holsheimer J, Boom HBK (1998) Analysis of current density and related parameters in spinal cord stimulation. IEEE Trans Rehab Eng 6:200–207CrossRef Wesselink WA, Holsheimer J, Boom HBK (1998) Analysis of current density and related parameters in spinal cord stimulation. IEEE Trans Rehab Eng 6:200–207CrossRef
50.
Zurück zum Zitat White AA, Panjabi MM (1990) Clinical biomechanics of the spine, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, p 288 White AA, Panjabi MM (1990) Clinical biomechanics of the spine, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, p 288
51.
Zurück zum Zitat Winkler T, Hering P, Straube P (2010) Spinal DC stimulation in humans modulates post-activation depression of the H-reflex depending on current polarity. Clin Neurophysiol 121:957–961PubMedCrossRef Winkler T, Hering P, Straube P (2010) Spinal DC stimulation in humans modulates post-activation depression of the H-reflex depending on current polarity. Clin Neurophysiol 121:957–961PubMedCrossRef
52.
Zurück zum Zitat Xu R, Burgar A, Ebraheim NA, Yeasting RA (1999) The quantitative anatomy of the laminas of the spine. Spine 24:107–113PubMedCrossRef Xu R, Burgar A, Ebraheim NA, Yeasting RA (1999) The quantitative anatomy of the laminas of the spine. Spine 24:107–113PubMedCrossRef
Metadaten
Titel
Spinal cord direct current stimulation: finite element analysis of the electric field and current density
verfasst von
Gabriel R. Hernández-Labrado
José L. Polo
Elisa López-Dolado
Jorge E. Collazos-Castro
Publikationsdatum
01.04.2011
Verlag
Springer-Verlag
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 4/2011
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-011-0756-9

Weitere Artikel der Ausgabe 4/2011

Medical & Biological Engineering & Computing 4/2011 Zur Ausgabe