Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 12/2011

01.12.2011 | Original Article

Calibration of the mechanical properties in a finite element model of a lumbar vertebra under dynamic compression up to failure

verfasst von: Anaïs Garo, Pierre Jean Arnoux, Eric Wagnac, Carl Eric Aubin

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 12/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Finite element models (FEM) dedicated to vertebral fracture simulations rarely take into account the rate dependency of the bone material properties due to limited available data. This study aims to calibrate the mechanical properties of a vertebral body FEM using an inverse method based on experiments performed at slow and fast dynamic loading conditions. A detailed FEM of a human lumbar vertebral body (23,394 elements) was developed and tested under compression at 2,500 and 10 mm s−1. A central composite design was used to adjust the mechanical properties (Young modulus, yield stress, and yield strain) while optimizing four criteria (ultimate strain and stress of cortical and trabecular bone) until the failure load and energy at failure reached experimental results from the literature. At 2,500 mm s−1, results from the calibrated simulation were in good agreement with the average experimental data (1.5% difference for the failure load and 0.1% for the energy). At 10 mm s−1, they were in good agreement with the average experimental failure load (0.6% difference), and within one standard deviation of the reported range of energy to failure. The proposed method provides a relevant mean to identify the mechanical properties of the vertebral body in dynamic loadings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bosisio MR, Talmant M, Skalli W, Laugier P, Mitton D (2007) Apparent Young’s modulus of human radius using inverse finite-element method. J Biomech 40(9):2022–2028PubMedCrossRef Bosisio MR, Talmant M, Skalli W, Laugier P, Mitton D (2007) Apparent Young’s modulus of human radius using inverse finite-element method. J Biomech 40(9):2022–2028PubMedCrossRef
2.
Zurück zum Zitat Buckley JM, Loo K, Motherway J (2007) Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Bone 40(3):767–774PubMedCrossRef Buckley JM, Loo K, Motherway J (2007) Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Bone 40(3):767–774PubMedCrossRef
3.
Zurück zum Zitat Burstein AH, Reilly DT, Martens M (1976) Aging of bone tissue: mechanical properties. J Bone Joint Surg Am 58(1):82–86PubMed Burstein AH, Reilly DT, Martens M (1976) Aging of bone tissue: mechanical properties. J Bone Joint Surg Am 58(1):82–86PubMed
4.
Zurück zum Zitat Chevalier Y, Charlebois M, Pahr D, VArga P, Heini P, Schneider E, Zysset P (2008) A patient-specific finite element methodology to predict damage accumulation in vertebral bodies under axial compression, sagittal flexion and combined loads. Comput Methods Biomech Biomed Eng 11(5):477–487CrossRef Chevalier Y, Charlebois M, Pahr D, VArga P, Heini P, Schneider E, Zysset P (2008) A patient-specific finite element methodology to predict damage accumulation in vertebral bodies under axial compression, sagittal flexion and combined loads. Comput Methods Biomech Biomed Eng 11(5):477–487CrossRef
5.
Zurück zum Zitat Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33(4):744–750PubMedCrossRef Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33(4):744–750PubMedCrossRef
6.
Zurück zum Zitat Edwards WT, Zheng Y, Ferrara LA, Yuan HA (2001) Structural features and thickness of the vertebral cortex in the thoracolumbar spine. Spine 26(2):218–225PubMedCrossRef Edwards WT, Zheng Y, Ferrara LA, Yuan HA (2001) Structural features and thickness of the vertebral cortex in the thoracolumbar spine. Spine 26(2):218–225PubMedCrossRef
7.
Zurück zum Zitat El-Rich M, Arnoux PJ, Wagnac E, Brunet C, Aubin CE (2009) Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions. J Biomech 42(9):1252–1262PubMedCrossRef El-Rich M, Arnoux PJ, Wagnac E, Brunet C, Aubin CE (2009) Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions. J Biomech 42(9):1252–1262PubMedCrossRef
8.
Zurück zum Zitat Eswaran SK, Gupta A, Keaveny TM (2007) Location of bone tissue at high risk of initial failure during compressive loading of a human vertebral body. Bone 41:733–739PubMedCrossRef Eswaran SK, Gupta A, Keaveny TM (2007) Location of bone tissue at high risk of initial failure during compressive loading of a human vertebral body. Bone 41:733–739PubMedCrossRef
9.
Zurück zum Zitat Evans FG (1973) Factors affecting the mechanical properties of bone. Bull N Y Acad Med 49(9):751–764PubMed Evans FG (1973) Factors affecting the mechanical properties of bone. Bull N Y Acad Med 49(9):751–764PubMed
10.
Zurück zum Zitat Faulkner KG, Cann CE, Hasegawa BH (1991) Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis. Radiology 179(3):669–674PubMed Faulkner KG, Cann CE, Hasegawa BH (1991) Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis. Radiology 179(3):669–674PubMed
11.
12.
Zurück zum Zitat Hansen U, Zioupos P, Simpson R, Currey JD, Hynd D (2008) The effect of strain rate on the mechanical properties of human cortical bone. J Biomech Eng 130(1):011011PubMedCrossRef Hansen U, Zioupos P, Simpson R, Currey JD, Hynd D (2008) The effect of strain rate on the mechanical properties of human cortical bone. J Biomech Eng 130(1):011011PubMedCrossRef
13.
Zurück zum Zitat Hongo M, Abe E, Shimada Y, Murai H, Ishikawa N, Sato K (1999) Surface strain distribution on thoracic and lumbar vertebrae under axial compression. The role in burst fracture. Spine 24:1197–1202PubMedCrossRef Hongo M, Abe E, Shimada Y, Murai H, Ishikawa N, Sato K (1999) Surface strain distribution on thoracic and lumbar vertebrae under axial compression. The role in burst fracture. Spine 24:1197–1202PubMedCrossRef
14.
Zurück zum Zitat Jones AC, Wilcox RK (2008) Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis. Med Eng Phys 30(10):1287–1304PubMedCrossRef Jones AC, Wilcox RK (2008) Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis. Med Eng Phys 30(10):1287–1304PubMedCrossRef
15.
Zurück zum Zitat Keaveny TM, Hayes WC (1993) A 20-year perspective on the mechanical properties of trabecular bone. J Biomech Eng 115(4B):534–542PubMedCrossRef Keaveny TM, Hayes WC (1993) A 20-year perspective on the mechanical properties of trabecular bone. J Biomech Eng 115(4B):534–542PubMedCrossRef
16.
Zurück zum Zitat Kopperdahl DL, Keaveny TM (1998) Yield strain behavior of trabecular bone. J Biomech 31(7):601–608PubMedCrossRef Kopperdahl DL, Keaveny TM (1998) Yield strain behavior of trabecular bone. J Biomech 31(7):601–608PubMedCrossRef
17.
Zurück zum Zitat Liebschner MA, Kopperdahl DL, Rosenberg WS, Keaveny TM (2003) Finite element modeling of the human thoracolumbar spine. Spine 28(6):559–565PubMed Liebschner MA, Kopperdahl DL, Rosenberg WS, Keaveny TM (2003) Finite element modeling of the human thoracolumbar spine. Spine 28(6):559–565PubMed
18.
Zurück zum Zitat Linde F, Nørgaard P, Hvid I, Odgaard A, Søballe K (1991) Mechanical properties of trabecular bone. Dependency on strain rate. J Biomech 24(9):803–809PubMedCrossRef Linde F, Nørgaard P, Hvid I, Odgaard A, Søballe K (1991) Mechanical properties of trabecular bone. Dependency on strain rate. J Biomech 24(9):803–809PubMedCrossRef
19.
Zurück zum Zitat McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg Am 67(8):1206–1228PubMed McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg Am 67(8):1206–1228PubMed
20.
Zurück zum Zitat McElhaney JH (1966) Dynamic response of bone and muscle tissue. J Appl Physiol 21(4):1231–1236PubMed McElhaney JH (1966) Dynamic response of bone and muscle tissue. J Appl Physiol 21(4):1231–1236PubMed
21.
Zurück zum Zitat Mirzaei M, Zeinali A, Razmjoo A, Nazemi M (2009) On prediction of the strength levels and failure patterns of human vertebrae using quantitative computed tomography (QCT)-based finite element method. J Biomech 42(11):1584–1591PubMedCrossRef Mirzaei M, Zeinali A, Razmjoo A, Nazemi M (2009) On prediction of the strength levels and failure patterns of human vertebrae using quantitative computed tomography (QCT)-based finite element method. J Biomech 42(11):1584–1591PubMedCrossRef
22.
Zurück zum Zitat Montgomery DC (2001) Design and analysis of experiment. Wiley, New York Montgomery DC (2001) Design and analysis of experiment. Wiley, New York
23.
Zurück zum Zitat Mosekilde L, Mosekilde L, Danielsen CC (1987) Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 8(2):79–85PubMedCrossRef Mosekilde L, Mosekilde L, Danielsen CC (1987) Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 8(2):79–85PubMedCrossRef
25.
Zurück zum Zitat Ochia RS, Tencer AF, Ching RP (2003) Effect of loading rate on endplate and vertebral body strength in human lumbar vertebrae. J Biomech 36(12):1875–1881PubMedCrossRef Ochia RS, Tencer AF, Ching RP (2003) Effect of loading rate on endplate and vertebral body strength in human lumbar vertebrae. J Biomech 36(12):1875–1881PubMedCrossRef
26.
Zurück zum Zitat Odin G, Savoldelli C, Bouchard PO, Tillier Y (2010) Determination of Young’s modulus of mandibular bone using inverse analysis. Med Eng Phys 32:630–637PubMedCrossRef Odin G, Savoldelli C, Bouchard PO, Tillier Y (2010) Determination of Young’s modulus of mandibular bone using inverse analysis. Med Eng Phys 32:630–637PubMedCrossRef
27.
Zurück zum Zitat Qiu TX, Tan KW, Lee VS, Teo EC (2006) Investigation of thoracolumbar T12–L1 burst fracture mechanism using finite element method. Med Eng Phys 28(7):656–664PubMedCrossRef Qiu TX, Tan KW, Lee VS, Teo EC (2006) Investigation of thoracolumbar T12–L1 burst fracture mechanism using finite element method. Med Eng Phys 28(7):656–664PubMedCrossRef
28.
Zurück zum Zitat Reilly DT, Burstein AH (1974) Review article. The mechanical properties of cortical bone. J Bone Joint Surg Am 56(5):1001–1022PubMed Reilly DT, Burstein AH (1974) Review article. The mechanical properties of cortical bone. J Bone Joint Surg Am 56(5):1001–1022PubMed
29.
Zurück zum Zitat Rockoff SD, Sweet E, Bleustein J (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3:163–175PubMedCrossRef Rockoff SD, Sweet E, Bleustein J (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3:163–175PubMedCrossRef
30.
Zurück zum Zitat Shim VPW, Yang LM, Liu JF, Lee VS (2005) Characterisation of the dynamic compressive mechanical properties of cancellous bone from the human cervical spine. Int J Impact Eng 32(1–4):525–540CrossRef Shim VPW, Yang LM, Liu JF, Lee VS (2005) Characterisation of the dynamic compressive mechanical properties of cancellous bone from the human cervical spine. Int J Impact Eng 32(1–4):525–540CrossRef
31.
Zurück zum Zitat Silva MJ, Keaveny TM, Hayes WC (1997) Load sharing between the shell and centrum in the lumbar vertebral body. Spine 22(2):140–150PubMedCrossRef Silva MJ, Keaveny TM, Hayes WC (1997) Load sharing between the shell and centrum in the lumbar vertebral body. Spine 22(2):140–150PubMedCrossRef
32.
Zurück zum Zitat Stokes IA, Chegini S, Ferguson SJ, Gardner-Morse MG, Iatridis JC, Laible JP (2010) Limitation of finite element analysis of poroelastic behavior of biological tissues undergoing rapid loading. Ann Biomed Eng 38(5):1780–1788PubMedCrossRef Stokes IA, Chegini S, Ferguson SJ, Gardner-Morse MG, Iatridis JC, Laible JP (2010) Limitation of finite element analysis of poroelastic behavior of biological tissues undergoing rapid loading. Ann Biomed Eng 38(5):1780–1788PubMedCrossRef
33.
Zurück zum Zitat Wall JC, Chatterji S, Jeffery JW (1970) On the origin of scatter in results of human bone strength tests. Med Biol Eng 8(2):171–180PubMedCrossRef Wall JC, Chatterji S, Jeffery JW (1970) On the origin of scatter in results of human bone strength tests. Med Biol Eng 8(2):171–180PubMedCrossRef
34.
Zurück zum Zitat Wilcox RK, Allen DJ, Hall RM, Limb D, Barton DC, Dickson RA (2004) A dynamic investigation of the burst fracture process using a combined experimental and finite element approach. Eur Spine J 13(6):481–488PubMedCrossRef Wilcox RK, Allen DJ, Hall RM, Limb D, Barton DC, Dickson RA (2004) A dynamic investigation of the burst fracture process using a combined experimental and finite element approach. Eur Spine J 13(6):481–488PubMedCrossRef
35.
Zurück zum Zitat Wirtz DC, Schiffers N, Pandorf T, Radermacher K, Weichert D, Forst R (2000) Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. J Biomech 33(10):1325–1330PubMedCrossRef Wirtz DC, Schiffers N, Pandorf T, Radermacher K, Weichert D, Forst R (2000) Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. J Biomech 33(10):1325–1330PubMedCrossRef
36.
Zurück zum Zitat Yamada H (1970) Strength of biological materials. The Williams and Wilkins Company, Baltimore Yamada H (1970) Strength of biological materials. The Williams and Wilkins Company, Baltimore
Metadaten
Titel
Calibration of the mechanical properties in a finite element model of a lumbar vertebra under dynamic compression up to failure
verfasst von
Anaïs Garo
Pierre Jean Arnoux
Eric Wagnac
Carl Eric Aubin
Publikationsdatum
01.12.2011
Verlag
Springer-Verlag
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 12/2011
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-011-0826-z

Weitere Artikel der Ausgabe 12/2011

Medical & Biological Engineering & Computing 12/2011 Zur Ausgabe