Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 8/2019

17.05.2019 | Original Article

Optimal data fusion for the improvement of QRS complex detection in multi-channel ECG recordings

verfasst von: Carlos A. Ledezma, Miguel Altuve

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The automatic analysis of the electrocardiogram (ECG) begins, traditionally, with the detection of QRS complexes. Afterwards, useful information can be extracted from it, ranging from the estimation of the instantaneous heart rate to nonlinear heart rate variability analysis. A plethora of works have been published on this topic; consequently, there exist many QRS complex detectors with high-performance values. However, just a few detectors have been conceived that profit from the information contained in several ECG leads to provide a robust QRS complex detection. In this work, we explore the fusion of multi-channel ECG recordings QRS detections as a means to improve the detection performance. This paper presents a decentralized multi-channel QRS complex fusion scheme that optimally combines single-channel detections to produce a single detection signal. Using six different widely used QRS complex detectors on the MIT-BIH Arrhythmia and INCART databases, a reduction in false and missed detections was achieved with the proposed approach compared with the single-channel counterpart. Furthermore, our detection results are comparable with the performance of other multi-channel detectors found in the literature, showing, in turn, various advantages in scalability, adaptability, and simplicity in the system’s implementation
.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Almeida R, Martínez JP, Rocha AP, Laguna P (2009) Multilead ECG delineation using spatially projected leads from wavelet transform loops. IEEE Trans Biomed Eng 56(8):1996–2005CrossRefPubMed Almeida R, Martínez JP, Rocha AP, Laguna P (2009) Multilead ECG delineation using spatially projected leads from wavelet transform loops. IEEE Trans Biomed Eng 56(8):1996–2005CrossRefPubMed
2.
Zurück zum Zitat American National Standard: ANSI/AAMI EC38:1998, Ambulatory Electrocardiographs (1998) American National Standard: ANSI/AAMI EC38:1998, Ambulatory Electrocardiographs (1998)
3.
Zurück zum Zitat American National Standard: ANSI/AAMI EC57:1998, Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms (1998) American National Standard: ANSI/AAMI EC57:1998, Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms (1998)
4.
Zurück zum Zitat Arbateni K, Bennia A (2014) Sigmoidal radial basis function ANN for QRS complex detection. Neurocomputing 145:438–450CrossRef Arbateni K, Bennia A (2014) Sigmoidal radial basis function ANN for QRS complex detection. Neurocomputing 145:438–450CrossRef
5.
Zurück zum Zitat Benitez DS, Gaydecki PA, Zaidi A, Fitzpatrick AP (2000) A new QRS detection algorithm based on the Hilbert transform. In: Computers in cardiology 2000, pp 379–382 Benitez DS, Gaydecki PA, Zaidi A, Fitzpatrick AP (2000) A new QRS detection algorithm based on the Hilbert transform. In: Computers in cardiology 2000, pp 379–382
6.
Zurück zum Zitat Chair Z, Varshney P.K. (1986) Optimal data fusion in multiple sensor detection systems. IEEE Trans Aerosp Electron Syst AES-22(1):98–101CrossRef Chair Z, Varshney P.K. (1986) Optimal data fusion in multiple sensor detection systems. IEEE Trans Aerosp Electron Syst AES-22(1):98–101CrossRef
7.
Zurück zum Zitat Chouhan V, Mehta S (2008) Detection of QRS complexes in 12-lead ECG using adaptive quantized threshold. Int J Comp Sci Net Sec 8(1):155–163 Chouhan V, Mehta S (2008) Detection of QRS complexes in 12-lead ECG using adaptive quantized threshold. Int J Comp Sci Net Sec 8(1):155–163
9.
Zurück zum Zitat Elgendi M, Björn E, Socrates D, Derek A (2014) Revisiting QRS detection methodologies for portable, wearable, Battery-Operated, and wireless ECG systems. PLOS ONE 9(1):1–18CrossRef Elgendi M, Björn E, Socrates D, Derek A (2014) Revisiting QRS detection methodologies for portable, wearable, Battery-Operated, and wireless ECG systems. PLOS ONE 9(1):1–18CrossRef
10.
Zurück zum Zitat Ghaffari A, Homaeinezhad M, Akraminia M, Atarod M, Daevaeiha M (2009) A robust wavelet-based multi-lead electrocardiogram delineation algorithm. Med Eng Phys 31(10): 1219–1227CrossRefPubMed Ghaffari A, Homaeinezhad M, Akraminia M, Atarod M, Daevaeiha M (2009) A robust wavelet-based multi-lead electrocardiogram delineation algorithm. Med Eng Phys 31(10): 1219–1227CrossRefPubMed
11.
Zurück zum Zitat Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220CrossRefPubMed Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220CrossRefPubMed
12.
Zurück zum Zitat He R, Wang K, Li Q, Yuan Y, Zhao N, Liu Y, Zhang H (2017) A novel method for the detection of R-peaks in ECG based on K-nearest neighbors and particle swarm optimization. EURASIP J Adv Signal Process 2017:82CrossRef He R, Wang K, Li Q, Yuan Y, Zhao N, Liu Y, Zhang H (2017) A novel method for the detection of R-peaks in ECG based on K-nearest neighbors and particle swarm optimization. EURASIP J Adv Signal Process 2017:82CrossRef
13.
Zurück zum Zitat Huang B, Wang Y (2009) Detecting QRS complexes of two-channel ECG signals by using combined wavelet entropy. In: 2009 3Rd international conference on bioinformatics and biomedical engineering, pp 1–4 Huang B, Wang Y (2009) Detecting QRS complexes of two-channel ECG signals by using combined wavelet entropy. In: 2009 3Rd international conference on bioinformatics and biomedical engineering, pp 1–4
14.
Zurück zum Zitat Huang B, Wang Y (2009) QRS complexes detection by using the principal component analysis and the combined wavelet entropy for 12-lead electrocardiogram signals. In: 2009 Ninth IEEE international conference on computer and information technology, vol 1, pp 246–251 Huang B, Wang Y (2009) QRS complexes detection by using the principal component analysis and the combined wavelet entropy for 12-lead electrocardiogram signals. In: 2009 Ninth IEEE international conference on computer and information technology, vol 1, pp 246–251
15.
Zurück zum Zitat Jain S, Ahirwal M, Kumar A, Bajaj V, Singh G (2017) QRS detection using adaptive filters: a comparative study. ISA Trans 66:362–375CrossRefPubMed Jain S, Ahirwal M, Kumar A, Bajaj V, Singh G (2017) QRS detection using adaptive filters: a comparative study. ISA Trans 66:362–375CrossRefPubMed
16.
Zurück zum Zitat Laguna P, Jané R., Caminal P (1994) Automatic detection of wave boundaries in multilead ECG signals: validation with the CSE database. Comput Biomed Res 27(1):45–60CrossRefPubMed Laguna P, Jané R., Caminal P (1994) Automatic detection of wave boundaries in multilead ECG signals: validation with the CSE database. Comput Biomed Res 27(1):45–60CrossRefPubMed
17.
Zurück zum Zitat Ledezma CA, Perpinan G, Severeyn E, Altuve M (2015) Data fusion for QRS complex detection in multi-lead electrocardiogram recordings. In: 11th international symposium on medical information processing and analysis, vol 9681. International Society for Optics and Photonics, p 968118 Ledezma CA, Perpinan G, Severeyn E, Altuve M (2015) Data fusion for QRS complex detection in multi-lead electrocardiogram recordings. In: 11th international symposium on medical information processing and analysis, vol 9681. International Society for Optics and Photonics, p 968118
18.
Zurück zum Zitat Mehta S, Lingayat N (2008) Combined entropy based method for detection of QRS complexes in 12-lead electrocardiogram using SVM. Comput Biol Med 38(1):138–145CrossRefPubMed Mehta S, Lingayat N (2008) Combined entropy based method for detection of QRS complexes in 12-lead electrocardiogram using SVM. Comput Biol Med 38(1):138–145CrossRefPubMed
19.
Zurück zum Zitat Mehta S, Lingayat N (2009) Application of support vector machine for the detection of P- and T-waves in 12-lead electrocardiogram. Comput Methods Prog Biomed 93(1):46–60CrossRef Mehta S, Lingayat N (2009) Application of support vector machine for the detection of P- and T-waves in 12-lead electrocardiogram. Comput Methods Prog Biomed 93(1):46–60CrossRef
20.
Zurück zum Zitat Mehta S, Lingayat N (2009) Identification of QRS complexes in 12-lead electrocardiogram. Expert Syst Appl 36(1):820–828CrossRef Mehta S, Lingayat N (2009) Identification of QRS complexes in 12-lead electrocardiogram. Expert Syst Appl 36(1):820–828CrossRef
21.
Zurück zum Zitat Meyer C, Gavela JF, Harris M (2006) Combining algorithms in automatic detection of QRS complexes in ECG signals. IEEE Trans Inf Technol Biomed 10(3):468–475CrossRefPubMed Meyer C, Gavela JF, Harris M (2006) Combining algorithms in automatic detection of QRS complexes in ECG signals. IEEE Trans Inf Technol Biomed 10(3):468–475CrossRefPubMed
22.
Zurück zum Zitat Mondelo V, Lado MJ, Méndez AJ, Vila XA, Rodríguez-linares L (2017) Combining 12-lead ECG information for a beat detection algorithm. J Adv Theoret Appl Inform 3(1):5–9CrossRef Mondelo V, Lado MJ, Méndez AJ, Vila XA, Rodríguez-linares L (2017) Combining 12-lead ECG information for a beat detection algorithm. J Adv Theoret Appl Inform 3(1):5–9CrossRef
23.
Zurück zum Zitat Moody GB, Mark RG (2001) The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag 20(3):45–50CrossRefPubMed Moody GB, Mark RG (2001) The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag 20(3):45–50CrossRefPubMed
24.
Zurück zum Zitat Moraes JCTB, Freitas MM, Vilani FN, Costa EV (2002) A QRS complex detection algorithm using electrocardiogram leads. In: Computers in cardiology, pp 205–208 Moraes JCTB, Freitas MM, Vilani FN, Costa EV (2002) A QRS complex detection algorithm using electrocardiogram leads. In: Computers in cardiology, pp 205–208
25.
Zurück zum Zitat Nayak C, Saha SK, Kar R, Mandal D (2019) An optimally designed digital differentiator based preprocessor for R-peak detection in electrocardiogram signal. Biomed Signal Process Control 49:440–464CrossRef Nayak C, Saha SK, Kar R, Mandal D (2019) An optimally designed digital differentiator based preprocessor for R-peak detection in electrocardiogram signal. Biomed Signal Process Control 49:440–464CrossRef
26.
Zurück zum Zitat Okada M (1979) A digital filter for the ORS complex detection. IEEE Trans Biomed Eng BME-26(12):700–703CrossRef Okada M (1979) A digital filter for the ORS complex detection. IEEE Trans Biomed Eng BME-26(12):700–703CrossRef
27.
Zurück zum Zitat Pahlm O, Sörnmo L (1984) Software QRS detection in ambulatory monitoring – a review. Med Biol Eng Comput 22(4):289–297CrossRefPubMed Pahlm O, Sörnmo L (1984) Software QRS detection in ambulatory monitoring – a review. Med Biol Eng Comput 22(4):289–297CrossRefPubMed
28.
Zurück zum Zitat Pan J, Tompkins WJ (1985) A real-time QRS detection algorithm. IEEE Trans Biomed Eng BME-32 (3):230–236CrossRef Pan J, Tompkins WJ (1985) A real-time QRS detection algorithm. IEEE Trans Biomed Eng BME-32 (3):230–236CrossRef
29.
Zurück zum Zitat Ramakrishnan AG, Prathosh P, Ananthapadmanabha TV (2014) Threshold-Independent QRS detection using the dynamic plosion index. IEEE Signal Process Lett 21(5):554–558CrossRef Ramakrishnan AG, Prathosh P, Ananthapadmanabha TV (2014) Threshold-Independent QRS detection using the dynamic plosion index. IEEE Signal Process Lett 21(5):554–558CrossRef
30.
Zurück zum Zitat Rincón F, Recas J, Khaled N, Atienza D (2011) Development and evaluation of multilead wavelet-based ECG delineation algorithms for embedded wireless sensor nodes. IEEE Trans Inf Technol Biomed 15(6):854–863CrossRefPubMed Rincón F, Recas J, Khaled N, Atienza D (2011) Development and evaluation of multilead wavelet-based ECG delineation algorithms for embedded wireless sensor nodes. IEEE Trans Inf Technol Biomed 15(6):854–863CrossRefPubMed
31.
Zurück zum Zitat Silva I, Moody B, Behar J, Johnson A, Oster J, Clifford G D, Moody GB (2015) Robust detection of heart beats in multimodal data. Physiol Meas 36(8):1629CrossRefPubMedPubMedCentral Silva I, Moody B, Behar J, Johnson A, Oster J, Clifford G D, Moody GB (2015) Robust detection of heart beats in multimodal data. Physiol Meas 36(8):1629CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Silva I, Moody GB (2014) An open-source toolbox for analysing and processing physionet databases in MATLAB and octave. J Open Res Soft 2(1):e27 Silva I, Moody GB (2014) An open-source toolbox for analysing and processing physionet databases in MATLAB and octave. J Open Res Soft 2(1):e27
33.
Zurück zum Zitat Thakor NV, Webster JG, Tompkins WJ (1983) Optimal QRS detector. Med Biol Eng Comput 21 (3):343–350CrossRefPubMed Thakor NV, Webster JG, Tompkins WJ (1983) Optimal QRS detector. Med Biol Eng Comput 21 (3):343–350CrossRefPubMed
34.
Zurück zum Zitat Torbey S, Akl SG, Redfearn DP (2012) Multi-lead QRS detection using window pairs. In: 2012 annual international conference of the IEEE engineering in medicine and biology society, pp 3143–3146 Torbey S, Akl SG, Redfearn DP (2012) Multi-lead QRS detection using window pairs. In: 2012 annual international conference of the IEEE engineering in medicine and biology society, pp 3143–3146
35.
Zurück zum Zitat Willems JL, Arnaud P, Bemmel JHV, Bourdillon PJ, Degani R, Denis B, Graham I, Harms F M, Macfarlane PW, Mazzocca G, Meyer J, Zywietz C (1987) A reference data base for multilead electrocardiographic computer measurement programs. J Am Coll Cardiol 10(6):1313–1321CrossRefPubMed Willems JL, Arnaud P, Bemmel JHV, Bourdillon PJ, Degani R, Denis B, Graham I, Harms F M, Macfarlane PW, Mazzocca G, Meyer J, Zywietz C (1987) A reference data base for multilead electrocardiographic computer measurement programs. J Am Coll Cardiol 10(6):1313–1321CrossRefPubMed
36.
Zurück zum Zitat Xiang Y, Lin Z, Meng J (2018) Automatic QRS complex detection using two-level convolutional neural network. BioMedical Engineering OnLine 17(1):13CrossRefPubMedPubMedCentral Xiang Y, Lin Z, Meng J (2018) Automatic QRS complex detection using two-level convolutional neural network. BioMedical Engineering OnLine 17(1):13CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Yochum M, Renaud C, Jacquir S (2016) Automatic detection of p, QRS and T patterns in 12 leads ECG signal based on CWT. Biomed Signal Process Control 25:46–52CrossRef Yochum M, Renaud C, Jacquir S (2016) Automatic detection of p, QRS and T patterns in 12 leads ECG signal based on CWT. Biomed Signal Process Control 25:46–52CrossRef
Metadaten
Titel
Optimal data fusion for the improvement of QRS complex detection in multi-channel ECG recordings
verfasst von
Carlos A. Ledezma
Miguel Altuve
Publikationsdatum
17.05.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 8/2019
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-019-01990-3

Weitere Artikel der Ausgabe 8/2019

Medical & Biological Engineering & Computing 8/2019 Zur Ausgabe