Skip to main content
Log in

Poisson vertex algebras in the theory of Hamiltonian equations

  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract.

We lay down the foundations of the theory of Poisson vertex algebras aimed at its applications to integrability of Hamiltonian partial differential equations. Such an equation is called integrable if it can be included in an infinite hierarchy of compatible Hamiltonian equations, which admit an infinite sequence of linearly independent integrals of motion in involution. The construction of a hierarchy and its integrals of motion is achieved by making use of the so called Lenard scheme. We find simple conditions which guarantee that the scheme produces an infinite sequence of closed 1-forms \(\omega_j, j \in {\mathbb {Z}}_+\), of the variational complex Ω. If these forms are exact, i.e., ω j are variational derivatives of some local functionals ∫ h j , then the latter are integrals of motion in involution of the hierarchy formed by the corresponding Hamiltonian vector fields. We show that the complex Ω is exact, provided that the algebra of functions is \(\fancyscript {V}\) is “normal”; in particular, for arbitrary \(\fancyscript {V}\), any closed form in Ω becomes exact if we add to \(\fancyscript {V}\) a finite number of antiderivatives. We demonstrate on the examples of the KdV, HD and CNW hierarchies how the Lenard scheme works. We also discover a new integrable hierarchy, which we call the CNW hierarchy of HD type. Developing the ideas of Dorfman, we extend the Lenard scheme to arbitrary Dirac structures, and demonstrate its applicability on the examples of the NLS, pKdV and KN hierarchies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakalov B., Kac V.G. and Voronov A.A. (1999). Cohomology of conformal algebras. Comm. Math. Phys. 200: 561–598

    Article  MATH  MathSciNet  Google Scholar 

  2. Barakat A. (2008). On the moduli space of deformations of bihamiltonian hierarchies of hydrodynamic type. Adv. Math. 219: 604–632

    Article  MATH  MathSciNet  Google Scholar 

  3. Sole De A. and Kac V.G. (2006). Finite vs affine W-algebras, Jpn. J. Math. 1: 137–261

    MATH  MathSciNet  Google Scholar 

  4. A. De Sole and V.G. Kac, Lie conformal algebra cohomology and the variational complex, Comm. Math. Phys., 292 (2009), 667–719; arXiv:0812.4897.

    Google Scholar 

  5. L.A. Dickey, Soliton Equations and Hamiltonian Systems. Second ed., Adv. Ser. Math. Phys., 26, World Sci. Publ., 2003.

  6. I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Nonlinear Sci. Theory Appl., John Wiley & Sons, 1993.

  7. Gelfand I.M. and Dorfman I. (1980). Schouten bracket and Hamiltonian operators. Funktsional Anal. i Prilozhen. 14: 71–74

    MathSciNet  Google Scholar 

  8. Gelfand I.M. and Dorfman I. (1982). Hamiltonian operators and the classical Yang–Baxter equation. Funktsional Anal. i Prilozhen. 16: 1–9

    Article  MathSciNet  Google Scholar 

  9. Helmholtz H. (1887). Über die physikalische Bedeutung des Prinzips der Kleinsten Wirkung. J. Reine Angew. Math., 100: 137–166

    Google Scholar 

  10. Ito M. (1982). Symmetries and conservation laws of a coupled nonlinear wave equation. Phys. Lett. A, 91: 335–338

    Article  MathSciNet  Google Scholar 

  11. V.G. Kac, Vertex Algebras for Beginners, Univ. Lecture Ser., 10, Amer. Math. Soc., Providence, RI, 1996; Second ed., 1998.

  12. Kosmann-Schwarzbach Y. (1996). From Poisson algebras to Gerstenhaber algebras. Ann. Inst. Fourier (Grenoble) 46: 1243–1274

    MATH  MathSciNet  Google Scholar 

  13. Magri (1978). A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19: 1156–1162

    Article  MATH  MathSciNet  Google Scholar 

  14. P. Olver, Applications of Lie Groups to Differential Equations, Grad. Texts in Math., 107, Springer-Verlag, 1986.

  15. Sokolov V.V. (1984). On Hamiltonian property of the Krichever–Novikov equation, Dokl. Akad. Nauk SSSR, 277: 48–50

    Google Scholar 

  16. L.A. Takhtazhyan and L.D. Faddeev, Hamiltonian Approach in Soliton Theory, Nauka, 1986.

  17. Vinogradov A.M. (1977). On the algebra-geometric foundations of Lagrangian field theory. Sov. Math. Dokl., 18: 1200–1204

    MATH  Google Scholar 

  18. V. Volterra, Leçons sur les Fonctions de Lignes, Gauthier-Villar, Paris, 1913.

  19. Wilson G. (1988). On the quasi-Hamiltonian formalism of the KdV equation. Phys. Lett. A, 132: 445–450

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliaa Barakat.

Additional information

Communicated by: Yasuyuki Kawahigashi

About this article

Cite this article

Barakat, A., De Sole, A. & Kac, V.G. Poisson vertex algebras in the theory of Hamiltonian equations. Jpn. J. Math. 4, 141–252 (2009). https://doi.org/10.1007/s11537-009-0932-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-009-0932-y

Keywords and phrases:

Mathematics Subject Classification (2000):

Navigation