Skip to main content
Log in

Resetting Behavior in a Model of Bursting in Secretory Pituitary Cells: Distinguishing Plateaus from Pseudo-Plateaus

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study a recently discovered class of models for plateau bursting, inspired by models for endocrine pituitary cells. In contrast to classical models for fold-homoclinic (square-wave) bursting, the spikes of the active phase are not supported by limit cycles of the frozen fast subsystem, but are transient oscillations generated by unstable limit cycles emanating from a subcritical Hopf bifurcation around a stable steady state. Experimental time courses are suggestive of such fold-subHopf models because the spikes tend to be small and variable in amplitude; we call this pseudo-plateau bursting. We show here that distinct properties of the response to attempted resets from the silent phase to the active phase provide a clearer, qualitative criterion for choosing between the two classes of models. The fold-homoclinic class is characterized by induced active phases that increase towards the duration of the unperturbed active phase as resets are delivered later in the silent phase. For the fold-subHopf class of pseudo-plateau bursting, resetting is difficult and succeeds only in limited windows of the silent phase but, paradoxically, can dramatically exceed the native active phase duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baer, S.M., Rinzel, J., 1988. Threshold for repetitive activity for a slow stimulus ramp: a memory effect and its dependence on fluctuations. Biophys. J. 54(3), 551–555.

    Google Scholar 

  • Bertram, R., Butte, M., Kiemel, T., Sherman, A., 1995. Topological and phenomenological classification of bursting oscillations. Bull. Math. Biol. 57, 413–439.

    MATH  Google Scholar 

  • Butera, R. Jr., Rinzel, J., Smith, J.C., 1999. Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. J. Neurophysiol. 82(1), 382–397.

    Google Scholar 

  • Chay, T.R., Keizer, J., 1983. Minimal model for membrane oscillations in the pancreatic β-cell. Biophys. J. 42, 181–190.

    Google Scholar 

  • Doedel, E., 1981. AUTO: A program for the automatic bifurcation analysis of autonomous systems. Cong. Num. 30, 265–284.

    MathSciNet  Google Scholar 

  • England, J.P., Krauskopf, B., Osinga, H.M., 2007. Computing two-dimensional global invariant manifolds in slow-fast systems. Int. J. Bifurc. Chaos 17(3), 805–822.

    Article  MathSciNet  MATH  Google Scholar 

  • Ermentrout, B., 2002. Simulating, Analyzing, and Animating Dynamical Systems. SIAM, Philadelphia.

    MATH  Google Scholar 

  • Golubitsky, M., Josic, K., Kaper, T.J., 2001. An unfolding theory approach to bursting in fast-slow systems. In: H. Broer, B. Krauskopf, G. Vegter (Eds.), Analysis of Dynamical Systems: Festschrift Dedicated to Floris Takens on the Occasion of his 60th Birthday, pp. 277–308. Institute of Physics, Bristol.

    Google Scholar 

  • Izhikevich, E.M., 2000. Neural excitability, spiking, and bursting. Int. J. Bifurc. Chaos 10, 1171–1266.

    Article  MATH  MathSciNet  Google Scholar 

  • Kinard, T.A., de Vries, G., Sherman, A., Satin, L.S., 1999. Modulation of the bursting properties of single mouse pancreatic β-cells by artificial conductances. Biophys. J. 76, 1423–1435.

    Article  Google Scholar 

  • Krauskopf, B., Osinga, H.M., 2003. Computing geodesic level sets on global (un)stable manifold of vector fields. SIAM J. Appl. Dyn. Syst. 2(4), 546–569.

    Article  MATH  MathSciNet  Google Scholar 

  • Krauskopf, B., Osinga, H.M., Doedel, E.J., Henderson, M.E., Guckenheimer, J.M., Vladimirsky, A., Dellnitz, M., Junge, O., 2005. A survey of methods for computing (un)stable manifolds of vector fields. SIAM J. Appl. Dyn. Syst. 15(3), 763–791.

    MATH  MathSciNet  Google Scholar 

  • Kuryshev, Y.A., Childs, G.V., Ritchie, A.K., 1996. Corticotropin-releasing hormone stimulates Ca2+ entry through L- and P-type Ca2+ channels in rat corticotropes. Endocrinology 137(6), 2269–2277.

    Article  Google Scholar 

  • LeBeau, A.P., Robson, A.B., McKinnon, A.E., Sneyd, J., 1998. Analysis of a reduced model of corticotroph action potentials. J. Theor. Biol. 192, 319–339.

    Article  Google Scholar 

  • Lisman, J., 1997. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci. 20(1), 38–43.

    Article  Google Scholar 

  • Phillips, M., Levy, S., Munzner, T., 1993. Geomview: an interactive geometry viewer. Not. Am. Math. Soc. 40, 985, http://www.geomview.org.

    Google Scholar 

  • Rinzel, J., 1987. A formal classification of bursting mechanisms in excitable systems. In: E. Teramoto, M. Yamaguti (Eds.), Mathematical Topics in Population Biology, Morphogenesis, and Neurosciences. Lecture Notes in Biomathematics, vol. 71, pp. 267–281. Springer, New York.

    Google Scholar 

  • Sherman, A., Rinzel, J., Keizer, J., 1988. Emergence of organized bursting in clusters of pancreatic β-cells by channel sharing. Biophys. J. 54, 411–425.

    Google Scholar 

  • Stojilkovic, S.S., Zemkova, H., van Goor, F., 2005. Biophysical basis of pituitary cell type-specific Ca2+ signaling-secretion coupling. Trends Endocrinol. Metab. 16(4), 152–159.

    Article  Google Scholar 

  • Tabak, J., Senn, W., O’Donovan, M.J., Rinzel, J., 2000. Modeling of spontaneous activity in developing spinal cord using activity-dependent depression in an excitatory network. J. Neurosci. 20(8), 3041–3056.

    Google Scholar 

  • Tabak, J., Toporikova, N., Freeman, M.E., Bertram, R., 2007. Low dose of dopamine may stimulate prolactin secretion by increasing fast potassium currents. J. Comput. Neurosci. Epub. Ahead of print DOI 10.1007/s10,827-006-0008-4.

  • Terman, D., 1991. Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J. Appl. Math. 51, 1418–1450.

    Article  MATH  MathSciNet  Google Scholar 

  • Tsaneva-Atanasova, K., Sherman, A., van Goor, F., Stojilkovic, S.S., 2007. Mechanism of spontaneous and receptor-controlled electrical activity in pituitary somatotrophs. J. Neurophysiol. 98(1), 131–144.

    Article  Google Scholar 

  • van Goor, F., Li, Y.X., Stojilkovic, S., 2001. Paradoxical role of large-conductance calcium-activated K+ (BK) channels in controlling action potential-driven Ca2+ entry in anterior pituitary cells. J. Neurosci. 21, 5902–5915.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hinke M. Osinga.

Additional information

J.V. Stern and H.M. Osinga contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stern, J.V., Osinga, H.M., LeBeau, A. et al. Resetting Behavior in a Model of Bursting in Secretory Pituitary Cells: Distinguishing Plateaus from Pseudo-Plateaus. Bull. Math. Biol. 70, 68–88 (2008). https://doi.org/10.1007/s11538-007-9241-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9241-x

Keywords

Navigation