Skip to main content

Advertisement

Log in

Maximum Number of Fixed Points in Regulatory Boolean Networks

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Boolean networks (BNs) have been extensively used as mathematical models of genetic regulatory networks. The number of fixed points of a BN is a key feature of its dynamical behavior. Here, we study the maximum number of fixed points in a particular class of BNs called regulatory Boolean networks, where each interaction between the elements of the network is either an activation or an inhibition. We find relationships between the positive and negative cycles of the interaction graph and the number of fixed points of the network. As our main result, we exhibit an upper bound for the number of fixed points in terms of minimum cardinality of a set of vertices meeting all positive cycles of the network, which can be applied in the design of genetic regulatory networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthony, M., 1987. Discrete Mathematics of Neural Networks: Selected Topics. Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics.

  • Akutsu, T., Kuhara, S., Maruyama, O., Miyano, S., 1998. A system for identifying Genetic Networks from gene expression patterns produced by gene disruptions and overexpressions. Genome Inform. 9, 151–60.

    Google Scholar 

  • Aracena, J., 2001. Modelos matemáticos discretos asociados a los sistemas biológicos. Aplicación a las redes de regulación génica. PhD thesis, U. Chile & UJF, Santiago, Chile, & Grenoble, France.

  • Aracena, J., González, M., Zúñiga, A., Méndez, M., Cambiazo, V., 2006. Regulatory network for cell shape changes during Drosophila ventral furrow formation. J. Theor. Biol. 239, 49–2.

    Article  Google Scholar 

  • Bagley, R.J., Glass, L., 1996. Counting and classifying attractors in high dimensional dynamical systems. J. Theor. Biol. 183, 269–84.

    Article  Google Scholar 

  • Cartwright, D., Harary, H., 1956. Structural balance: a generalization of Heider’s theory. Psychol. Rev. 63, 277–93.

    Article  Google Scholar 

  • Cinquin, O., Demongeot, J., 2002. Positive and negative feedback: striking a balance between necessary antagonists. J. Theor. Biol. 216, 229–41.

    Article  MathSciNet  Google Scholar 

  • Demongeot, J., Kaufmann, M., Thomas, R., 2000. Positive regulatory circuits and memory. C. R. Acad. Sci. 323, 69–0.

    Google Scholar 

  • Glass, L., Kauffman, S.A., 1973. The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39, 103–29.

    Article  Google Scholar 

  • Harary, F., Norman, R., Cartwright, D., 1965. Structural models: An Introduction to the Theory of Directed Graphs. Wiley, New York.

    MATH  Google Scholar 

  • Harris, S., Sawhill, B., Wuensche, A., Kauffman, S.A., 2002. A model of transcriptional regulatory networks based on biases in the observed regulation rules. Complexity 7, 23–0.

    Article  Google Scholar 

  • Huang, S., 1999. Gene expression profiling, genetic networks and cellular states: an integrating concept for tumorigenesis and drug discovery. J. Mol. Med. 77, 469–80.

    Article  Google Scholar 

  • Irons, D.J., 2006. Improving the efficiency of attractor cycle identification in Boolean networks. Physica D 217, 7–1.

    MATH  MathSciNet  Google Scholar 

  • Kauffman, S.A., 1969. Metabolic stability and epigenesis in randomly constructed genetics nets. J. Theor. Biol. 22, 437–67.

    Article  MathSciNet  Google Scholar 

  • Kauffman, S.A., 1993. The Origins of Order, Self-Organization and Selection in Evolution. Oxford University Press, London.

    Google Scholar 

  • Kauffman, S.A., Peterson, C., Samuelsson, B., Troein, C., 2003. Random boolean network models and the yeast transcriptional network. Proc. Natl. Acad. Sci. 100, 14796–4799.

    Article  Google Scholar 

  • Mochizuki, A., 2005. An analytical study of the number of steady states in gene regulatory networks. J. Theor. Biol. 236, 291–10.

    Article  MathSciNet  Google Scholar 

  • Mendoza, L., Alvarez-Buylla, E., 1998. Dynamics of the genetic regulatory network for Arabidopsis Thaliana flower morphogenesis. J. Theor. Biol. 193, 307–19.

    Article  Google Scholar 

  • Milano, M., Roli, A., 2000. Solving the safistiablity problem through Boolean networks. In: Lecture Notes in Artificial Intelligence, vol. 1792, pp. 72–3.

  • Montalva, M., Aracena, J., Gajardo, A., 2008. On the complexity of feedback set problems in signed digraphs. ENDM 30, 249–54.

    Google Scholar 

  • Nikolajewa, S., Friedel, M., Wilhelm, T., 2007. Boolean networks with biologically relevant rules show ordered behavior. BioSystems 90, 40–7.

    Article  Google Scholar 

  • Pal, R., Ivanov, I., Datta, A., Bittner, M., Dougherty, E., 2005. Generating Boolean networks with a prescribed attractor structure. Bioinformatics 21, 4021–025.

    Article  Google Scholar 

  • Samuelsson, B., Troein, C., 2003. Superpolynomial growth in the number of attractors in Kauffman networks. Phys. Rev. Lett. 90, 098701.

    Article  MathSciNet  Google Scholar 

  • Sánchez, L., Thieffry, D., 2001. A logical analysis of the Drosophila Gap-gene system. J. Theor. Biol. 211, 115–41.

    Article  Google Scholar 

  • Szallasi, Z., Liang, S., 1998. Modeling the normal and neoplastic cell cycle with realistic boolean genetic networks: their application for understanding carcinogenesis and assessing therapeutic strategies. Proc. Pac. Symp. Biocomput. 3, 66–6.

    Google Scholar 

  • Thomas, R., 1994. The role of feedback circuits: positive feedback circuits are a necessary condition for positive real eigenvalues of the Jacobian matrix. Ber. Bunsenges. Phys. Chem. 98, 1148–151.

    Google Scholar 

  • Thomas, R., Richelle, J., 1988. Positive feedback loops and multistationarity. Discrete Appl. Math. 19, 381–96.

    Article  MATH  MathSciNet  Google Scholar 

  • West, D., 1996. Introduction to Graph Theory. Prentice Hall, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Aracena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aracena, J. Maximum Number of Fixed Points in Regulatory Boolean Networks. Bull. Math. Biol. 70, 1398–1409 (2008). https://doi.org/10.1007/s11538-008-9304-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9304-7

Keywords

Navigation