Skip to main content

Advertisement

Log in

A PDE Model for Imatinib-Treated Chronic Myelogenous Leukemia

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We derive a model for describing the dynamics of imatinib-treated chronic myelogenous leukemia (CML). This model is a continuous extension of the agent-based CML model of Roeder et al. (Nat. Med. 12(10), 1181–1184, 2006) and of its recent formulation as a system of difference equations (Kim et al. in Bull. Math. Biol. 70(3), 728–744, 2008). The new model is formulated as a system of partial differential equations that describe various stages of differentiation and maturation of normal hematopoietic cells and of leukemic cells.

An imatinib treatment is also incorporated into the model. The simulations of the new PDE model are shown to qualitatively agree with the results that were obtained with the discrete-time (difference equation and agent-based) models. At the same time, for a quantitative agreement, it is necessary to adjust the values of certain parameters, such as the rates of imatinib-induced inhibition and degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, L.H., Michor, F., 2006. Mathematical models of targeted cancer therapy. Br. J. Cancer. 95(9), 1136–141.

    Article  Google Scholar 

  • Adimy, M., Pujo-Menjouet, L., 2003. A mathematical model describing cellular division with a proliferating phase duration depending on the maturity of cells. Electron. J. Differ. Equ. 2003(107), 1–4.

    MathSciNet  Google Scholar 

  • Campbell, J.D., Cook, G., Holyoake, T.L., 2001. Evolution of bone marrow transplantation—the original immunotherapy. Trends Immunol. 22(2), 88–2.

    Article  Google Scholar 

  • Colijn, C., Mackey, M.C., 2005. A mathematical model of hematopoiesis–I. Periodic chronic myelogenous leukemia. J. Theor. Biol. 237(2), 117–32.

    Article  MathSciNet  Google Scholar 

  • DeConde, R., Kim, P.S., Levy, D., Lee, P.P., 2005. Post-transplantation dynamics of the immune response to chronic myelogenous leukemia. J. Theor. Biol. 236(1), 39–9.

    Article  MathSciNet  Google Scholar 

  • Dingli, D., Michor, F., 2006. Successful therapy must eradicate cancer stem cells. Stem Cells 24(12), 2603–610.

    Article  Google Scholar 

  • Druker, B.J., Lydon, N.B., 2000. Lessons learned from the development of an ABL tyrosine kinase inhibitor for chronic myelogenous leukemia. J. Clin. Invest. 105(1), 3–.

    Article  Google Scholar 

  • Fokas, A.S., Keller, J.B., Clarkson, B.D., 1991. Mathematical model of granulocytopoiesis and chronic myelogenous leukemia. Cancer Res. 51(8), 2084–091.

    Google Scholar 

  • Kim, P.S., Lee, P.P., Levy, D., 2007. Mini-Transplants for Chronic Myelogenous Leukemia: A Modeling Perspective. In: Queinnec et al. (Eds.), Biology and Control Theory: Current Challenges, Lecture Notes in Control and Information Sciences, vol. 357, pp. 3–0.

  • Kim, P.S., Lee, P.P., Levy, D., 2008. Modeling imatinib-treated chronic myelogenous leukemia: reducing the complexity of agent-based models. Bull. Math. Biol. 70(3), 728–44.

    Article  MATH  MathSciNet  Google Scholar 

  • Komarova, N.L., Wodarz, D., 2005. Drug resistance in cancer: Principles of emergence and prevention. Proc. Natl. Acad. Sci. USA 102(27), 9714–719.

    Article  Google Scholar 

  • Michor, F., Hughes, T.P., Iwasa, Y., Branford, S., Shah, N.P., Sawyers, C.L., Nowak, M.A., 2005. Dynamics of chronic myeloid leukaemia. Nature 435, 1267–270.

    Article  Google Scholar 

  • Moore, H., Li, N.K., 2004. A mathematical model for chronic myelogenous leukemia (CML) and T cell interaction. J. Theor. Biol. 225(4), 513–23.

    Article  MathSciNet  Google Scholar 

  • Neiman, B., 2002. A mathematical model of chronic myelogenous leukemia. Master’s thesis, University College, Oxford University, UK.

  • Pujo-Menjouet, L., Mackey, M.C., 2004. Contribution to the study of periodic chronic myelogenous leukemia. C. R. Biol. 327, 235–44.

    Article  Google Scholar 

  • Roeder, I., 2003. Dynamical modeling of hematopoietic stem cell organization—Design and validation of the new concept of within-tissue plasticity. PhD thesis, University of Leipzig, Germany.

  • Roeder, I., Glauche, I., 2008. Pathogenesis, treatment effects, and resistance dynamics in chronic myeloid leukemia—insights from mathematical model analyses. J. Mol. Med. 85(1), 17–7.

    Article  Google Scholar 

  • Roeder, I., Horn, M., Glauche, I., Hochhaus, A., Mueller, M.C., Loeffler, M., 2006. Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat. Med. 12(10), 1181–184.

    Article  Google Scholar 

  • Thijsen, S.F.T., Schuurhuis, G.J., van Oostveen, J.W., Ossenkoppele, G.J., 1999. Chronic mlyeloid leukemia from basics to bedside. Leukemia 13(11), 1646–674.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doron Levy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, P.S., Lee, P.P. & Levy, D. A PDE Model for Imatinib-Treated Chronic Myelogenous Leukemia. Bull. Math. Biol. 70, 1994–2016 (2008). https://doi.org/10.1007/s11538-008-9336-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9336-z

Keywords

Navigation