Skip to main content

Advertisement

Log in

Interaction of Tumor with Its Micro-environment: A Mathematical Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper is concerned with early development of transformed epithelial cells (TECs) in the presence of fibroblasts in the tumor micro-environment. These two types of cells interact by means of cytokines such as transforming growth factor (TGF-β) and epidermal growth factor (EGF) secreted, respectively, by the TECs and the fibroblasts. As this interaction proceeds, TGF-β induces fibroblasts to differentiate into myofibroblasts which secrete EGF at a larger rate than fibroblasts. We monitor the entire process in silico, in a setup which mimics experiments in a Tumor Chamber Invasion Assay, where a semi-permeable membrane coated by extracellular matrix (ECM) is placed between two chambers, one containing TECs and another containing fibroblasts. We develop a mathematical model, based on a system of PDEs, that includes the interaction between TECs, fibroblasts, myofibroblasts, TGF-β, and EGF, and we show how model parameters affect tumor progression. The model is used to generate several hypotheses on how to slow tumor growth and invasion. In an Appendix, it is proved that the mathematical model has a unique global in-time solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, R., Donnelly, S., Peng, T., Bucala, R., Metz, C., 2001. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J. Immunol. 166(12), 7556–7562.

    Google Scholar 

  • Adams, E., Newton, C., Braunsberg, H., Shaikh, N., Ghilchik, M., James, V., 1988. Effects of human breast fibroblasts on growth and 17 beta-estradiol dehydrogenase activity of MCF-7 cells in culture. Breast Cancer Res. Treat. 11(2), 165–172.

    Article  Google Scholar 

  • Alarcon, T., Byrne, H., Maini, P., 2004. Towards whole-organ modelling of tumour growth. Prog. Biophys. Mol. Biol. 85(2–3), 451–472.

    Article  Google Scholar 

  • Albini, A., Iwamoto, Y., Kleinman, H., Martin, G., Aaronson, S., Kozlowski, J., McEwan, R., 1987. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 47(12), 3239–3245.

    Google Scholar 

  • Almholt, K., Green, K., Juncker-Jensen, A., Nielsen, B., Lund, L., Romer, J., 2007. Extracellular proteolysis in transgenic mouse models of breast cancer. J. Mammary Gland Biol. Neoplasia 12(1), 83–97.

    Article  Google Scholar 

  • Aznavoorian, S., Stracke, M., Krutzsch, H., Schiffmann, E., Liotta, L., 1990. Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells. J. Cell Biol. 110(4), 1427–1438.

    Article  Google Scholar 

  • Basbaum, C., Werb, Z., 1996. Focalized proteolysis: spatial and temporal regulation of extracellular matrix degradation at the cell surface. Curr. Opin. Cell Biol. 8(5), 731–738.

    Article  Google Scholar 

  • Bechetoille, N., Haftek, M., Staquet, M., Cochran, A., Schmitt, D., Berthier-Vergnes, O., 2000. Penetration of human metastatic melanoma cells through an authentic dermal-epidermal junction is associated with dissolution of native collagen types IV and VII. Melanoma Res. 10(5), 427–434.

    Article  Google Scholar 

  • Bemis, L., Schedin, P., 2000. Reproductive state of rat mammary gland stroma modulates human breast cancer cell migration and invasion. Cancer Res. 60(13), 3414–3418.

    Google Scholar 

  • Bhowmick, N., Neilson, E., Moses, H., 2004. Stromal fibroblasts in cancer initiation and progression. Nature 432(7015), 332–337.

    Article  Google Scholar 

  • Boccardo, F., Lunardi, G., Petti, A., Rubagotti, A., 2003. Enterolactone in breast cyst fluid: correlation with EGF and breast cancer risk. Breast Cancer Res. Treat. 79(1), 17–23.

    Article  Google Scholar 

  • Bray, D., 1992. Cell Movements. Gerland, New York.

    Google Scholar 

  • Brown, D., 1999. Dependence of neurones on astrocytes in a coculture system renders neurones sensitive to transforming growth factor beta1-induced glutamate toxicity. J. Neurochem. 72(3), 943–953.

    Article  Google Scholar 

  • Campbell, M., Wollish, W., Lobo, M., Esserman, L., 2002. Epithelial and fibroblast cell lines derived from a spontaneous mammary carcinoma in a MMTV/neu transgenic mouse. In Vitro Cell. Dev. Biol. Anim. 38(6), 326–333.

    Article  Google Scholar 

  • Chabottaux, V., Sounni, N., Pennington, C., English, W., Brule, F., Blacher, S., Gilles, C., Munaut, C., Maquoi, E., Lopez-Otin, C., Murphy, G., Edwards, D., Foidart, J., Noel, A., 2006. Membrane-type 4 matrix metalloproteinase promotes breast cancer growth and metastases. Cancer Res. 66(10), 5165–5172.

    Article  Google Scholar 

  • Chaplain, M.A.J., 1996. Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modeling of the stages of tumour development. Math. Comput. Model. 23(6), 47–87.

    Article  MATH  Google Scholar 

  • Cheng, J., Weiner, L., 2003. Tumors and their microenvironments: tilling the soil Commentary re: A.M. Scott et al., A Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin. Cancer Res. 9(5), 1590–1595.

    Google Scholar 

  • Chung, S., Miles, F., Sikes, R., Cooper, C., Farach-Carson, M., Ogunnaike, B., 2009. Quantitative modeling and analysis of the transforming growth factor beta signaling pathway. Biophys. J. 96(5), 1733–1750.

    Article  Google Scholar 

  • Dalal, B., Keown, P., Greenberg, A., 1993. Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am. J. Pathol. 143(2), 381–389.

    Google Scholar 

  • Delvoye, P., Wiliquet, P., Leveque, J., Nusgens, B., Lapiere, C., 1991. Measurement of mechanical forces generated by skin fibroblasts embedded in a three-dimensional collagen gel. J. Invest. Dermatol. 97(5), 898–902.

    Article  Google Scholar 

  • Dickinson, R., Tranquillo, R., 1993. A stochastic model for adhesion-mediated cell random motility and haptotaxis. J. Math. Biol. 31(6), 563–600.

    Article  MATH  Google Scholar 

  • Farmer, P., Bonnefoi, H., Anderle, P., Cameron, D., Wirapati, P., Becette, V., Andre, S., Piccart, M., Campone, M., Brain, E., Macgrogan, G., Petit, T., Jassem, J., Bibeau, F., Blot, E., Bogaerts, J., Aguet, M., Bergh, J., Iggo, R., Delorenzi, M., 2009. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat. Med. 15(1), 68–74.

    Article  Google Scholar 

  • Friedman, A., 1969. Partial Differential Equations. Holt, Reinhart and Winston, New York. Reprinted by Krieger, 1976.

    MATH  Google Scholar 

  • Friedman, A., Lolas, G., 2005. Analysis of a mathematical model of tumor lymphangiogenesis. Math. Models Methods Appl. Sci. 15, 95–107.

    Article  MATH  MathSciNet  Google Scholar 

  • Friedman, A., Huang, C., Yong, J., 1995. Effective permeability of the boundary of a domain. Commun. Partial Differ. Equ. 20(1&2), 59–102.

    Article  MATH  MathSciNet  Google Scholar 

  • Gaffney, E., Pugh, K., Maini, P., Arnold, F., 2002. Investigating a simple model of cutaneous wound healing angiogenesis. J. Math. Biol. 45(4), 337–374.

    Article  MATH  MathSciNet  Google Scholar 

  • Geho, D., Bandle, R., Clair, T., Liotta, L., 2005. Physiological mechanisms of tumor-cell invasion and migration. Physiology (Bethesda) 20, 194–200.

    Google Scholar 

  • Ha, H., Moon, H., Nam, M., Lee, J., Ryoo, Z., Lee, T., Lee, K., So, B., Sato, H., Seiki, M., Yu, D., 2001. Overexpression of membrane-type matrix metalloproteinase-1 gene induces mammary gland abnormalities and adenocarcinoma in transgenic mice. Cancer Res. 61(3), 984–990.

    Google Scholar 

  • Hanamura, N., Yoshida, T., Matsumoto, E., Kawarada, Y., Sakakura, T., 1997. Expression of fibronectin and tenascin-C mRNA by myofibroblasts, vascular cells and epithelial cells in human colon adenomas and carcinomas. Int. J. Cancer 73(1), 10–15.

    Article  Google Scholar 

  • Hansen, R., Bissell, M., 2000. Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones. Endocr. Relat. Cancer 7(2), 95–113.

    Article  Google Scholar 

  • Hayashido, Y., Lucas, A., Rougeot, C., Godyna, S., Argraves, W., Rochefort, H., 1998. Estradiol and fibulin-1 inhibit motility of human ovarian- and breast-cancer cells induced by fibronectin. Int. J. Cancer 75(4), 654–658.

    Article  Google Scholar 

  • Hofland, L., Burg, B., Eijck, C., Sprij, D., Koetsveld, P., Lamberts, S., 1995. Role of tumor-derived fibroblasts in the growth of primary cultures of human breast-cancer cells: effects of epidermal growth factor and the somatostatin analogue octreotide. Int. J. Cancer 60(1), 93–99.

    Article  Google Scholar 

  • Hooff, A., 1988. Stromal involvement in malignant growth. Adv. Cancer Res. 50, 159–196.

    Article  Google Scholar 

  • Horgan, K., Jones, D., Mansel, R., 1987. Mitogenicity of human fibroblasts in vivo for human breast cancer cells. Br. J. Surg. 74(3), 227–229.

    Article  Google Scholar 

  • Imai, Y., Leung, C., Friesen, H., Shiu, R., 1982. Epidermal growth factor receptors and effect of epidermal growth factor on growth of human breast cancer cells in long-term tissue culture. Cancer Res. 42(11), 4394–4398.

    Google Scholar 

  • Jia, Y., Zeng, Z., Markwart, S., Rockwood, K., Ignatoski, K., Ethier, S., Livant, D., 2004. Integrin fibronectin receptors in matrix metalloproteinase-1-dependent invasion by breast cancer and mammary epithelial cells. Cancer Res. 64(23), 8674–8681.

    Article  Google Scholar 

  • Jones, P., 2001. Extracellular matrix and tenascin-C in pathogenesis of breast cancer. Lancet 357(9273), 1992–1994.

    Article  Google Scholar 

  • Kalluri, R., Zeisberg, M., 2006. Fibroblasts in cancer. Nat. Rev. Cancer 6(5), 392–401.

    Article  Google Scholar 

  • Kang, J., Kim, J., Song, H., Bae, M., Yi, E., Kim, K., Kim, Y., 2003. Anti-angiogenic and anti-tumor invasive activities of tissue inhibitor of metalloproteinase-3 from shark, Scyliorhinus torazame. Biochim. Biophys. Acta 1620(1–3), 59–64.

    Google Scholar 

  • Kim, Y., Stolarska, M., Othmer, H., 2007. A hybrid model for tumor spheroid growth in vitro I: Theoretical development and early results. Math. Models Methods Appl. Sci. 17, 1773–1798.

    Article  MATH  MathSciNet  Google Scholar 

  • Kim, Y., Friedman, A., Wallace, J., Li, F., Ostrowski, M., 2009. Transformed epithelial cells and fibroblasts/myofibroblasts interaction in breast tumor: a mathematical model and experiments (in press).

  • Koka, S., Vance, J., Maze, G., 1995. Bone growth factors: potential for use as an osseointegration enhancement technique (OET). J. West Soc. Periodontol. Periodontal. Abstr. 43(3), 97–104.

    Google Scholar 

  • Kong, F., Anscher, M., Murase, T., Abbott, B., Iglehart, J., Jirtle, R., 1995. Elevated plasma transforming growth factor-beta 1 levels in breast cancer patients decrease after surgical removal of the tumor. Ann. Surg. 222(2), 155–162.

    Article  Google Scholar 

  • Kretzschmar, M., 2000. Transforming growth factor-beta and breast cancer: Transforming growth factor-beta/SMAD signaling defects and cancer. Breast Cancer Res. 2(2), 107–115.

    Article  MathSciNet  Google Scholar 

  • Kretzschmar, M., Doody, J., Timokhina, I., Massague, J., 1999. A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras. Genes Dev. 13(7), 804–816.

    Article  Google Scholar 

  • Kudlow, J., Cheung, C., Bjorge, J., 1986. Epidermal growth factor stimulates the synthesis of its own receptor in a human breast cancer cell line. J. Biol. Chem. 261(9), 4134–4138.

    Google Scholar 

  • Kunz-Schughart, L., Wenninger, S., Neumeier, T., Seidl, P., Knuechel, R., 2003. Three-dimensional tissue structure affects sensitivity of fibroblasts to TGF-beta 1. Am. J. Physiol. Cell Physiol. 284(1), C209–C219.

    Google Scholar 

  • Ladyzhenskaya, O., Solonnikov, V., Uraltseva, N., 1969. Linear and Quasilinear Equations of Parabolic Type. Am. Math. Soc., Providence.

    Google Scholar 

  • Marino, S., Hogue, I., Ray, C., Kirschner, D., 2008. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254(1), 178–196.

    Article  Google Scholar 

  • Mueller, M., Fusenig, N., 2004. Friends or foes—bipolar effects of the tumour stroma in cancer. Nat. Rev. Cancer 4(11), 839–849.

    Article  Google Scholar 

  • Nakajima, Y., Gotanda, T., Uchimiya, H., Furukawa, T., Haraguchi, M., Ikeda, R., Sumizawa, T., Yoshida, H., Akiyama, S., 2004. Inhibition of metastasis of tumor cells overexpressing thymidine phosphorylase by 2-deoxy-L-ribose. Cancer Res. 64(5), 1794–1801.

    Article  Google Scholar 

  • Namy, P., Ohayon, J., Tracqui, P., 2004. Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J. Theor. Biol. 227(1), 103–120.

    Article  MathSciNet  Google Scholar 

  • Nielsen, B., Rank, F., Lopez, J., Balbin, M., Vizoso, F., Lund, L., Dano, K., Lopez-Otin, C., 2001. Collagenase-3 expression in breast myofibroblasts as a molecular marker of transition of ductal carcinoma in situ lesions to invasive ductal carcinomas. Cancer Res. 61(19), 7091–7100.

    Google Scholar 

  • Nielsen, B., Rank, F., Illemann, M., Lund, L., Dano, K., 2007. Stromal cells associated with early invasive foci in human mammary ductal carcinoma in situ coexpress urokinase and urokinase receptor. Int. J. Cancer 120(10), 2086–2095.

    Article  Google Scholar 

  • Nishikawa, H., Ozaki, Y., Nakanishi, T., Blomgren, K., Tada, T., Arakawa, A., Suzumori, K., 2004. The role of cathepsin B and cystatin C in the mechanisms of invasion by ovarian cancer. Gynecol. Oncol. 92(3), 881–886.

    Article  Google Scholar 

  • Ogmundsdottir, H., Petursdottir, I., Gudmundsdottir, I., Amundadottir, L., Ronnov-Jessen, L., Petersen, O., 1993. Effects of lymphocytes and fibroblasts on the growth of human mammary carcinoma cells studied in short-term primary cultures. In Vitro Cell. Dev. Biol. Anim. 29A(12), 936–942.

    Article  Google Scholar 

  • Ohtani, H., Sasano, N., 1984. Stromal cells of the fibroadenoma of the human breast. An immunohistochemical and ultrastructural study. Virchows Arch A Pathol. Anat. Histopathol. 404(1), 7–16.

    Article  Google Scholar 

  • Olsen, L., Sherratt, J., Maini, P., 1995. A mechanochemical model for adult dermal wound contraction and the permanence of the contracted tissue displacement profile. J. Theor. Biol. 177(2), 113–128.

    Article  Google Scholar 

  • Paszek, M.J., Weaver, V.M., 2004. The tension mounts: mechanics meets morphogenesis and malignancy. J. Mammary Gland Biol. Neoplasia 9(4), 325–342, review.

    Article  Google Scholar 

  • Paszek, M.J., Zahir, N., Johnson, K.R., Lakins, J.N., Rozenberg, G.I., Gefen, A., Reinhart-King, C.A., Margulies, S.S., Dembo, M., Boettiger, D., Hammer, D.A., Weaver, V.M., 2005. Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3), 241–254.

    Article  Google Scholar 

  • Perumpanani, A., Byrne, H., 1999. Extracellular matrix concentration exerts selection pressure on invasive cells. Eur. J. Cancer 35(8), 1274–1280.

    Article  Google Scholar 

  • Pettet, G.J., Byrne, H.M., McElwain, D.L.S., Norbury, J., 1996. A model of wound healing angiogenesis in soft-tissue. Math. Biosci. 136, 35–64.

    Article  MATH  Google Scholar 

  • Pinkas, J., Teicher, B., 2006. TGF-beta in cancer and as a therapeutic target. Biochem. Pharmacol. 72(5), 523–529.

    Article  Google Scholar 

  • Ronnov-Jessen, L., Deurs, B., Celis, J., Petersen, O., 1990. Smooth muscle differentiation in cultured human breast gland stromal cells. Lab. Invest. 63(4), 532–543.

    Google Scholar 

  • Ronnov-Jessen, L., Petersen, O., Koteliansky, V., Bissell, M., 1995. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J. Clin. Invest. 95(2), 859–873.

    Article  Google Scholar 

  • Rudolph-Owen, L., Chan, R., Muller, W., Matrisian, L., 1998. The matrix metalloproteinase matrilysin influences early-stage mammary tumorigenesis. Cancer Res. 58(23), 5500–5506.

    Google Scholar 

  • Russo, R., Foltz, C., Liotta, L., 1983. New invasion assay using endothelial cells grown on native human basement membrane. Clin. Exp. Metastasis 1(2), 115–127.

    Article  Google Scholar 

  • Saad, S., Bendall, L., James, A., Gottlieb, D., Bradstock, K., 2000. Induction of matrix metalloproteinases MMP-1 and MMP-2 by co-culture of breast cancer cells and bone marrow fibroblasts. Breast Cancer Res. Treat. 63(2), 105–115.

    Article  Google Scholar 

  • Sadlonova, A., Novak, Z., Johnson, M., Bowe, D., Gault, S., Page, G., Thottassery, J., Welch, D., Frost, A., 2005. Breast fibroblasts modulate epithelial cell proliferation in three-dimensional in vitro co-culture. Breast Cancer Res. 7(1), R46–R59.

    Article  Google Scholar 

  • Samoszuk, M., Tan, J., Chorn, G., 2005. Clonogenic growth of human breast cancer cells co-cultured in direct contact with serum-activated fibroblasts. Breast Cancer Res. 7, R274–R283.

    Article  Google Scholar 

  • Sappino, A., Skalli, O., Jackson, B., Schurch, W., Gabbiani, G., 1988. Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues. Int. J. Cancer 41(5), 707–712.

    Article  Google Scholar 

  • Sato, N., Maehara, N., Goggins, M., 2004. Gene expression profiling of tumor-stromal interactions between pancreatic cancer cells and stromal fibroblasts. Cancer Res. 64(19), 6950–6956.

    Article  Google Scholar 

  • Schwarz, L., Wright, J., Gingras, M., Kondaiah, P., Danielpour, D., Pimentel, M., Sporn, M., Greenberg, A., 1990. Aberrant TGF-beta production and regulation in metastatic malignancy. Growth Factors 3(2), 115–127.

    Article  Google Scholar 

  • Sherratt, J.A., Murray, J.D., 1990. Models of epidermal wound healing. Proc. R. Soc. Lond., B 241, 29–36.

    Article  Google Scholar 

  • Sherratt, J.A., Sage, E.H., Murray, J.D., 1993. Chemical control of Eukaryotic cell movement: a new model. J. Theor. Biol. 162, 23–40.

    Article  Google Scholar 

  • Shiomi, T., Okada, Y., 2003. MT1-MMP and MMP-7 in invasion and metastasis of human cancers. Cancer Metastasis Rev. 22(2–3), 145–152.

    Article  Google Scholar 

  • Sternlicht, M., Lochter, A., Sympson, C., Huey, B., Rougier, J., Gray, J., Pinkel, D., Bissell, M., Werb, Z., 1999. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98(2), 137–146.

    Article  Google Scholar 

  • Stokes, C.L., Lauffenburger, D.A., 1991. Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol 152, 377–403.

    Article  Google Scholar 

  • Tamimi, S., Ahmed, A., 1986. Stromal changes in early invasive and non-invasive breast carcinoma: an ultrastructural study. J. Pathol. 150(1), 43–49.

    Article  Google Scholar 

  • Taylor, P., Woodfield, R., Hodgkin, M., Pettitt, T., Martin, A., Kerr, D., Wakelam, M., 2002. Breast cancer cell-derived EMMPRIN stimulates fibroblast MMP2 release through a phospholipase A(2) and 5-lipoxygenase catalyzed pathway. Oncogene 21(37), 5765–5772.

    Article  Google Scholar 

  • Thorne, R., Hrabetova, S., Nicholson, C., 2004. Diffusion of epidermal growth factor in rat brain extracellular space measured by integrative optical imaging. J. Neurophysiol. 92(6), 3471–3481.

    Article  Google Scholar 

  • Tlsty, T., 2001. Stromal cells can contribute oncogenic signals. Semin. Cancer Biol. 11(2), 97–104.

    Article  Google Scholar 

  • Tsukada, T., McNutt, M., Ross, R., Gown, A., 1987. HHF35, a muscle actin-specific monoclonal antibody. II. Reactivity in normal, reactive, and neoplastic human tissues. Am. J. Pathol. 127(2), 389–402.

    Google Scholar 

  • Tyson, R., Stern, L., LeVeque, R., 2000. Fractional step methods applied to a chemotaxis model. J. Math. Biol. 41(5), 455–475.

    Article  MATH  MathSciNet  Google Scholar 

  • Ueda, M., Terai, Y., Yamashita, Y., Kumagai, K., Ueki, K., Yamaguchi, H., Akise, D., Hung, Y., Ueki, M., 2002. Correlation between vascular endothelial growth factor-C expression and invasion phenotype in cervical carcinomas. Int. J. Cancer 98(3), 335–343.

    Article  Google Scholar 

  • Uhal, B., Ramos, C., Joshi, I., Bifero, A., Pardo, A., Selman, M., 1998. Cell size, cell cycle, and alpha-smooth muscle actin expression by primary human lung fibroblasts. Am. J. Physiol. 275(5 Pt 1), L998–L1005.

    Google Scholar 

  • Vailhe, B., Ronot, X., Tracqui, P., Usson, Y., Tranqui, L., 1997. In vitro angiogenesis is modulated by the mechanical properties of fibrin gels and is related to alpha v beta3 integrin localization. In Vitro Cell. Dev. Biol.-Anim. 33, 763–773.

    Article  Google Scholar 

  • Valter, M., Wiestler, O., Pietsch, T., 1999. Differential control of VEGF synthesis and secretion in human glioma cells by IL-1 and EGF. Int. J. Dev. Neurosci. 17(5–6), 565–577.

    Article  Google Scholar 

  • Vernon, R.B., Angello, J.C., Iruela-Arispe, M.L., et al., 1992. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66, 536–547.

    Google Scholar 

  • Wakefield, L., Smith, D., Masui, T., Harris, C., Sporn, M., 1987. Distribution and modulation of the cellular receptor for transforming growth factor-beta. J. Cell Biol. 105(2), 965–975.

    Article  Google Scholar 

  • Wandel, E., Raschke, A., Hildebrandt, G., Eberle, J., Dummer, R., Anderegg, U., Saalbach, A., 2002. Fibroblasts enhance the invasive capacity of melanoma cells in vitro. Arch. Dermatol. Res. 293(12), 601–608.

    Article  Google Scholar 

  • Witty, J., Wright, J., Matrisian, L., 1995. Matrix metalloproteinases are expressed during ductal and alveolar mammary morphogenesis, and misregulation of stromelysin-1 in transgenic mice induces unscheduled alveolar. Mol. Biol. Cell 6(10), 1287–1303.

    Google Scholar 

  • Woodcock, E., Land, S., Andrews, R., 1993. A low affinity, low molecular weight endothelin-A receptor present in neonatal rat heart. Clin. Exp. Pharmacol. Physiol. 20(5), 331–334.

    Article  Google Scholar 

  • Yamada, S., Toda, S., Shin, T., Sugihara, H., 1999. Effects of stromal fibroblasts and fat cells and an environmental factor air exposure on invasion of laryngeal carcinoma (HEp-2) cells in a collagen gel invasion assay system. Arch. Otolaryngol. Head Neck Surg. 125(4), 424–431.

    Google Scholar 

  • Yang, Y., Dukhanina, O., Tang, B., Mamura, M., Letterio, J., MacGregor, J., Patel, S., Khozin, S., Liu, Z., Green, J., Anver, M., Merlino, G., Wakefield, L., 2002. Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J. Clin. Invest. 109(12), 1607–1615.

    Google Scholar 

  • Yashiro, M., Ikeda, K., Tendo, M., Ishikawa, T., Hirakawa, K., 2005. Effect of organ-specific fibroblasts on proliferation and differentiation of breast cancer cells. Breast Cancer Res. Treat. 90(3), 307–313.

    Article  Google Scholar 

  • Yuan, K., Singh, R., Rezonzew, G., Siegal, G., 2006. In vitro matrices for studying tumor cell invasion. In: Cell Motility in Cancer Invasion and Metastasis, Cancer Metastasis—Biology and Treatment, vol. 8, pp. 25–54. Springer, Berlin, eCM.

    Chapter  Google Scholar 

  • Zhao, Y., Xiao, A., Park, H., Newcomer, R., Yan, M., Man, Y., Heffelfinger, S., Sang, Q., 2004. Endometase/matrilysin-2 in human breast ductal carcinoma in situ and its inhibition by tissue inhibitors of metalloproteinases-2 and -4: a putative role in the initiation of breast cancer. Cancer Res. 64(2), 590–598.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangjin Kim.

Additional information

Y. Kim and A. Friedman are supported by the National Science Foundation upon agreement 112050.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y., Friedman, A. Interaction of Tumor with Its Micro-environment: A Mathematical Model. Bull. Math. Biol. 72, 1029–1068 (2010). https://doi.org/10.1007/s11538-009-9481-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9481-z

Navigation