Skip to main content
Log in

A Model of CatSper Channel Mediated Calcium Dynamics in Mammalian Spermatozoa

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

CatSpers are calcium (Ca2+) channels that are located along the principal piece of mammalian sperm flagella and are directly linked to sperm motility and hyperactivation. It has been observed that Ca2+ entry through CatSper channels triggers a tail to head Ca2+ propagation in mouse sperm, as well as a sustained increase of Ca2+ in the head. Here, we develop a mathematical model to investigate this propagation and sustained increase in the head. A 1-d reaction-diffusion model tracking intracellular Ca2+ with flux terms for the CatSper channels, a leak flux, and plasma membrane Ca2+ clearance mechanism is studied. Results of this simple model exhibit tail to head Ca2+ propagation, but no sustained increase in the head. Therefore, in this model, a simple plasma membrane pump-leak system with diffusion in the cytosol cannot account for these experimentally observed results. It has been proposed that Ca2+ influx from the CatSper channels induce additional Ca2+ release from an internal store. We test this hypothesis by examining the possible role of Ca2+ release from the redundant nuclear envelope (RNE), an inositol 1,4,5-trisphosphate (IP3) gated Ca2+ store in the neck. The simple model is extended to include an equation for IP3 synthesis, degradation, and diffusion, as well as flux terms for Ca2+ in the RNE. When IP3 and the RNE are accounted for, the results of the model exhibit a tail to head Ca2+ propagation as well as a sustained increase of Ca2+ in the head.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IP3 :

inositol 1,4,5-trisphosphate

RNE:

redundant nuclear envelope

IP3R:

inositol 1,4,5-trisphosphate receptor

Ca2+ :

Calcium

[Ca2+]:

Calcium concentration

cAMP:

cyclic adenosine monophosphate

PMCA:

plasma membrane Ca2+-ATPase

References

  • Allbritton, N.L., Meyer, T., Stryer, L., 1992. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258, 1812–1815.

    Article  Google Scholar 

  • Aoki, F., Sakai, S., Kohmoto, K., 1999. Regulation of flagellar bending by cAMP and Ca2+ in hamster sperm. Mol. Reprod. Dev. 53, 777–83.

    Article  Google Scholar 

  • Atri, A., Amundson, J., Clapham, D., Sneyd, J., 1993. A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys. J. 65, 1727–1739.

    Article  Google Scholar 

  • Bedu-Addo, K., Costello, S., Harper, C., Machado-Oliveira, G., Lefievre, L., Ford, C., Barratt, C., Publicover, S., 2008. Mobilisation of stored calcium in the neck region of human sperm—a mechanism for regulation of flagellar activity. Int. J. Dev. Biol. 52, 615–626.

    Article  Google Scholar 

  • Berridge, M.J., 2005. Unlocking the secrets of cell signalling. Annu. Rev. Physiol. 67, 1–21.

    Article  Google Scholar 

  • Blum, J.J., Reed, M.C., Janovick, J., Conn, P.M., 2000. A mathematical model quantifying GnRH-induced LH secretion from gonadotropes. Am. J. Physiol. Endocrinol. Metabol. 278, 263–272.

    Google Scholar 

  • Burton, K.A., McKnight, S., 2007. PKA germ cells, and fertility. Physiol. 22, 40–46.

    Article  Google Scholar 

  • Camello, P.J., Gardner, O., Petersen, O.H., Tepikin, A.V., 1996. Calcium dependence of calcium extrusion and calcium uptake in mouse pancreatic acinar cells. J. Physiol. (Lond.) 490, 585–593.

    Google Scholar 

  • Carlson, A.E., Westenbroek, R.E., Quill, T., Ren, D., Claphan, D.E., Hille, B., Garbers, D.L., Babcock, D.F., 2003. CatSper1 required for evoked Ca2+ entry and control of flagellar function in sperm. Proc. Natl. Acad. Sci. USA 100(25), 14864–14868.

    Article  Google Scholar 

  • Carlson, A.E., Quill, T.A., Westenbroek, R.E., Schuch, S.M., Hille, B., Babcock, D.F., 2005. Identical phenotypes of CatSper1 and CatSper2 null sperm. Int. J. Biol. Chem. 280, 32238–32244.

    Article  Google Scholar 

  • Cosson, J., 1996. A moving image of flagella: news and views on the mechanisms involved in axonemal beating. Cell Biol. Int. 20, 83–94.

    Article  Google Scholar 

  • Costello, S., Michelangeli, F., Nash, K., Lefievre, L., Morris, J., Machado-Oliveira, G., Barratt, C., Kirkman-Brown, J., Publicover, S., 2009. Ca2+-stores in sperm: their identities and functions. Reproduction 138, 425–437.

    Article  Google Scholar 

  • Cummins, J.M., Woodall, P.F., 1985. On mammalian sperm dimensions. J. Reprod. Fertil. 75, 153–175.

    Article  Google Scholar 

  • Darszon, A., Beltran, C., Felix, R., Nishigaki, T., Trevino, C.L., 2001. Ion transport in sperm signaling. Dev. Biol. 240, 1–14.

    Article  Google Scholar 

  • Dillon, R., Fauci, L., Omoto, C., Yang, X., 2007. Fluid dynamic models of flagellar and ciliary beating. Ann. New York Acad. Sci. 1101(1), 494–505.

    Article  Google Scholar 

  • Dode, L., Andersen, J.P., Raeymaekers, L., Missiaen, L., Vilsen, B., Wuytack, F., 2005. Functional comparison between secretory pathway Ca2+/Mn2+-ATPase (SPCA) 1 and sarcoplasmic reticulum Ca2+-ATPase (SERCA) 1 isoforms by steady-state and transient kinetic analyses. J. Biol. Chem. 280(47), 39124–39134.

    Article  Google Scholar 

  • Dougherty, D.P., Wright, G.A., Yew, A.C., 2005. Computational model of the cAMP-mediated sensory response and calcium-dependent adaptation in vertebrate olfactory receptor neurons. Proc. Natl. Acad. Sci. USA 102, 10415–10420.

    Article  Google Scholar 

  • Felix, R., 2005. Molecular physiology and pathology of Ca2+-conducting channels in the plasma membrane of mammalian sperm. Reproduction 129, 251–262.

    Article  Google Scholar 

  • Finch, E.A., Turner, T.J., Goldin, S.M., 1991. Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science 252, 443–446.

    Article  Google Scholar 

  • Fukami, K., Yoshida, M., Inoue, T., Kurokawa, M., Fissore, R.A., Yoshida, N., Mikoshiba, K., Takenawa, T., 2003. Phospholipase Cδ4 is required for Ca2+ mobilization essential for acrosome reaction in sperm. J. Cell Biol. 161, 79–88.

    Article  Google Scholar 

  • Gunter, T.E., Buntinas, L., Sparagna, G., Eliseev, R., Gunter, K., 2000. Mitochondrial calcium transport: mechanisms and functions. Cell Calcium 28, 285–296.

    Article  Google Scholar 

  • Harper, C.V., Barratt, C.L., Publicover, S.J., 2004. Stimulation of human spermatozoa with progesterone gradients to stimulate approach to the oocyte. Induction of [Ca\(^{2+}_{i}\)] oscillations and cyclical transitions in flagellar beating. J. Biol. Chem. 279, 46315–46325.

    Article  Google Scholar 

  • Harper, C., Wootton, L., Michelangeli, F., Lefievre, L., Barratt, C., Publicover, S., 2005. Secretory pathway Ca2+-ATPase (SPCA1) Ca2+ pumps, not SERCAs, regulate complex [Ca2+] i signals in human spermatozoa. J. Cell Sci. 118(8), 1673–1685.

    Article  Google Scholar 

  • Herrick, S.B., Schweissinger, D.L., Soo-Woo, K., Bryan, K.R., Mann, S., Cardullo, R.A., 2005. The acrosomal vesicle of mouse sperm is a calcium store. J. Cell Physiol. 202, C663–C671.

    Article  Google Scholar 

  • Ho, H.C., Suarez, S.S., 2001a. An inositol 1,4,5-trisphosphate receptor-gated intracellular Ca2+ store is involved in regulating sperm hyperactivated motility. Biol. Reprod. 65, 1606–1615.

    Article  Google Scholar 

  • Ho, H.C., Suarez, S.S., 2001b. Hyperactivation of mammalian spermatozoa: function and regulation. Reproduction 122, 519–526.

    Article  Google Scholar 

  • Ho, H.C., Suarez, S.S., 2003. Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility. Biol. Reprod. 68, 1590–1596.

    Article  Google Scholar 

  • Ho, H.C., Granish, K.A., Suarez, S.S., 2002. Hyperactivated motility of bull sperm is triggered at the axoneme by Ca2+ and not cAMP. Dev. Biol. 250, 208–217.

    Article  Google Scholar 

  • Hong, D., Jaron, D., Buerk, D.G., Barbee, K.A., 2008. Transport-dependent calcium signaling in spatially segregated cellular caveolar domains. Am. J. Physiol., Cell Physiol. 294, C856–C866.

    Article  Google Scholar 

  • Ishijima, S., Mohri, H., Overstreet, J.W., Yudin, A.I., 2006. Hyperactivation of monkey spermatozoa is triggered by Ca2+ and completed by cAMP. Mol. Reprod. Dev. 73, 1129–1139.

    Article  Google Scholar 

  • Jimenez-Gonzalez, C., Michelangeli, F., Harper, C.V., Barratt, C.L.R., Publicover, S.J., 2006. Calcium signalling in human spermatozoa: a specialized ‘toolkit’ of channels, transporters, and stores. Hum. Reprod. Update 12, 253–267.

    Article  Google Scholar 

  • Jin, J., Jin, N., Zheng, H., Ro, S., Tafolla, D., Sanders, K.M., Yan, W., 2007. CatSper3 and CatSper4 are essential for sperm hyperactivated motility and male fertility in the mouse. Biol. Reprod. 77, 37–44.

    Article  Google Scholar 

  • Joseph, S.K., Rice, H.L., Williamson, J.R., 1989. The effect of external calcium and pH on inositol trisphosphate-mediated calcium release from cerebellum microsomal fractions. Biochem. J. 258, 261–265.

    Google Scholar 

  • Keizer, J., De Young, G.W., Two roles for Ca2+ in agonist stimulated Ca2+ oscillations. Biophys. J. 61, 649–660.

  • Kirichok, Y., Navarro, B., Clapham, D.E., 2006. Whole cell patch clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature 439, 737–740.

    Article  Google Scholar 

  • Kirkman-Brown, J.C., Barratt, C.L., Publicover, S.J., 2003. Zona pellucida and progesterone-induced Ca2+ signaling and acrosome reaction in human spermatozoa. J. Androl. 23, 306–315.

    Google Scholar 

  • Kobori, H., Miyazaki, S., Kuwabara, T., 2000. Characterization of intracellular Ca2+ increase in response to progesterone and cyclic nucleotides in mouse spermatozoa. Biol. Reprod. 63, 113–120.

    Article  Google Scholar 

  • Kuroda, Y., Kaneko, S., Yoshimura, Y., Noazawa, S., Mikoshiba, K., 1999. Are there inositol 1,4,5-trisphosphate (IP3) receptors in human sperm? Life Sci. 65(2), 135–143.

    Article  Google Scholar 

  • Lefievre, L., De Lamirande, E., Gagnon, C., 2000. The cyclic GMP-specific phosphodiesterase inhibitor, sildenafil, stimulates human sperm motility and capacitation but not acrosome reaction. J. Androl. 21, 929–937.

    Google Scholar 

  • Lefievre, L., Chen, Y., Conner, S.J., Scott, J.L., Publicover, S.J., Ford, W.C., Barratt, C.L., 2007. Human spermatozoa contain multiple targets for protein S-nitrosylation: an alternative mechanism of the modulation of sperm function by nitric oxide? Proteonomics 7, 3066–3084.

    Article  Google Scholar 

  • Lobley, A., Pierron, V., Reynolds, L., Allen, L., Michalovich, D., 2003. Identification of human and mouse CatSper3 and CatSper4 genes: characterisation of a common interaction domain and evidence for expression in testis. Reprod. Biol. Endocrinol. 1, 53–67.

    Article  Google Scholar 

  • Marquez, B., Suarez, S.S., 2004. Different signaling pathways in bovine sperm regulate capacitation and hyperactivation. Biol. Reprod. 70, 1626–1633.

    Article  Google Scholar 

  • Marquez, B., Ignotz, G., Suarez, S.S., 2007. Contributions of extracellular and intracellular Ca2+ to regulation of sperm motility: release of intracellular stores can hyperactivate CatSper1 and CatSper2 null sperm. Dev. Biol. 303, 214–221.

    Article  Google Scholar 

  • Meyer, T., Stryer, L., 1988b. Molecular model for receptor-stimulated calcium spiking. Proc. Natl. Acad. Sci. USA 85, 5051–5055.

    Article  Google Scholar 

  • Meyer, T., Stryer, L., 1991. Calcium spiking. Annu. Rev. Biophys. Biophys. Chem. 20, 153–174.

    Article  Google Scholar 

  • Meyer, T., Holowka, S., Stryer, L., 1988a. Highly cooperative opening of calcium channels by inositol 1,4,5-trisphosphate. Science 240, 653–656.

    Article  Google Scholar 

  • Meyer, T., Wensel, T., Stryer, L., 1990. Kinetics of calcium channel opening by inositol 1,4,5-trisphosphate. Biochemistry 29, 32–37.

    Article  Google Scholar 

  • Minelli, A., Allegrucci, C., Rosati, R., Mezzasoma, I., 2000. Molecular and binding characteristics of IP3 receptors in bovine spermatozoa. Mol. Reprod. Dev. 56, 527–533.

    Article  Google Scholar 

  • Nicholls, D.G., Chalmers, S., 2005. The integration of mitochondrial calcium transport and storage. J. Bioenerg. Biomembranes 36(4), 1573–6881.

    Google Scholar 

  • Nolan, M.A., Babcock, D.F., Wennemuth, G., Brown, W., Burton, K.A., McKnight, G.S., 2004. Sperm-specific protein kinase A catalytic subunit Cα 2 orchestrates cAMP signaling for male fertility. Proc. Natl. Acad. Sci. USA 101(37), 13483–13488.

    Article  Google Scholar 

  • Okunade, G.W., Miller, M.L., Pyne, G.J., Sutliff, R.L., O’Connor, K.T., Neumann, J.C., Andringa, A., Miller, D.A., Prasad, V., 2004. Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J. Biol. Chem. 279(32), 33742–33750.

    Article  Google Scholar 

  • Parys, J.B., Sernett, S.E., DeLisle, S., Snyder, P.M., Welsh, M.J., Campbell, K.P., 1992. Isolation, characterization, and localization of the inositol 1,4,5-trisphosphate receptor protein in Xenopus laevis oocytes. Int. J. Biol. Chem. 267, 18776–18782.

    Google Scholar 

  • Pattni, K., Banting, G., 2004. Ins(14,5)P3 metabolism and the family of IP3-3 kinases. Cell. Signal. 16(6), 643–654.

    Article  Google Scholar 

  • Pesch, S., Bergmann, M., 2006. Structure of mammalian spermatozoa in respect to viability, fertility, and cryopreservation. Micron 37, 597–612.

    Article  Google Scholar 

  • Publicover, S.J., Barratt, C.L., 1999. Voltage-operated Ca2+ channels and the acrosome reaction: which channels are present and what do they do? Hum. Reprod. 14, 873–879.

    Article  Google Scholar 

  • Qi, H., Moran, M.M., Navarro, B., Chong, J.A., Krapivinsky, G., Krapivinsky, L., Kirichok, Y., Ramsey, I.S., Quill, T.A., Clapham, D.E., 2007. All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc. Natl. Acad. Sci. USA 104, 1219–1223.

    Article  Google Scholar 

  • Quill, T., Sugden, S.A., Rossi, K.L., Doolittle, L.K., Hammer, R.E., Garbers, D.L., 2003. Hyperactivated sperm motility driven by CatSper2 is required for fertilization. Proc. Natl. Acad. Sci. USA 100, 14869–14874.

    Article  Google Scholar 

  • Rebecchi, M.J., Pentyala, S.N., 2000. Structure function, and control of phosphoinositide-specific phospholipase. C. Physiol. Rev. 80, 1291–1335.

    Google Scholar 

  • Ren, D., Navarro, B., Perez, G., Jackson, A.C., Hsu, S., Shi, Q., Tilly, J.L., Clapham, D.E., 2001. A sperm ion channel required for sperm motility and male fertility. Nature 413, 603–609.

    Article  Google Scholar 

  • Rhee, S.G., 2001. Regulation of phosphoinositide-specific phospholipase. C. Annu. Rev. Biochem. 70, 281–312.

    Article  Google Scholar 

  • Roldan, E.R.S., 1998. Role of phospholipases during sperm acrosomal exocytosis. Front. Biosci. 3, 1109–1119.

    Google Scholar 

  • Roose, T., Chapman, S.J., Maini, P.K., 2006. A mathematical model for simultaneous spatio-temporal dynamics of calcium and inositol 1,4,5-trisphosphate in madin-darby canine kidney epithelial cells. Bull. Math. Biol. 68, 2027–2051.

    Article  MathSciNet  Google Scholar 

  • Schmidt, M., Evellin, S., Paschal, A.O.W., von Dorp, F., Rehmann, H., Lomasney, J.W., Jakobs, K.H., 2001. A new phospholipase-C–calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat. Cell Biol. 3, 1020–1024.

    Article  Google Scholar 

  • Schuh, K., Cartwright, E.J., Jankevics, E., Bundschu, K., Liebermann, J., Williams, J.C., Armesilla, A.L., Emerson, M., Oceandy, D., Knobeloch, K.P., Neyses, L., 2004. Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J. Biol. Chem. 279, 28220–28226.

    Article  Google Scholar 

  • Sims, C.E., Allbritton, N.L., 1998. Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate by the oocytes of Xenopus laevis. J. Biol. Chem. 273(7), 4052–4058.

    Article  Google Scholar 

  • Smith, E.F., 2002. Regulation of flagellar dynein by calcium and a role for an axonemal calmodulin and calmodulin dependent kinase. Mol. Biol. Cell 13, 3303–3313.

    Article  Google Scholar 

  • Smrcka, A.V., Helper, J.R., Brown, K.O., Sternweis, P.C., 1991. Regulation of polyphosphoinositide-specific phospholipase C activity by purified G q . Science 251, 804–807.

    Article  Google Scholar 

  • Sneyd, J., 2002. Calcium excitability. In: Sneyd, J. (Ed.), An introduction to mathematical modeling in physiology, cell biology, and immunology. Proc. Sympos. Appl. Math. 59, 83–118.

  • Sneyd, J., Wetton, B.T.R., Charles, A.C., Sanderson, M.J., 1995. Intercellular calcium waves mediated by diffusion of inositol trisphosphate—a two-dimensional model. Am. J. Physiol. Cell Physiol. 268, C1537–C1545.

    Google Scholar 

  • Sneyd, J., Tsaneva-Atanasova, K., Bruce, J.I.E., Straub, S.V., Giovannucci, D.R., Yule, D.I., 2003. A model of calcium waves in pancreatic and parotid acinar cells. Biophys. J. 85, 1392–1405.

    Article  Google Scholar 

  • Sperelakis, N., Xiong, X., Haddad, G., Masuda, H., 1994. Regulation of slow calcium channels of myocardial cells and vascular smooth muscle cells by cyclic nucleotides and phosphorylation. Mol. Cell. Biochem. 14, 103–117.

    Article  Google Scholar 

  • Stauss, C.R., Votta, T.J., Suarez, S.S., 1995. Sperm motility hyperactivation facilitates penetration of the hamster zona pellucida. Biol. Reprod. 53, 1280–1285.

    Article  Google Scholar 

  • Suarez, S.S., 2008. Control of hyperactivation in sperm. Hum. Reprod. Update 14, 647–657.

    Article  MathSciNet  Google Scholar 

  • Suarez, S.S., Dai, X., 1995. Intracellular calcium reaches different levels in hyperactivated and acrosome-reacted hamster sperm. Mol. Reprod. Dev. 42(3), 325–333.

    Article  Google Scholar 

  • Suarez, S.S., Varosi, S.M., Dai, X., 1993. Intracellular calcium increases with hyperactivation in intact, moving hamster sperm and oscillates with the flagellar beat cycle. Proc. Natl. Acad. Sci. USA 90, 4660–4664.

    Article  Google Scholar 

  • Swann, K., Larman, M.G., Saunders, C.M., Lai, F.A., 2004. The cytosolic sperm factor that triggers Ca2+ oscillations and egg activation in mammals is a novel phospholipase C: PLCζ. Reproduction 127, 431–439.

    Article  Google Scholar 

  • Tasken, K., Aandahl, E.M., 2004. Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol. Rev. 84, 137–167.

    Article  Google Scholar 

  • Taylor, S.J., Exton, J.H., 1987. Guanine-nucleotide and hormone regulation of polyphosphoinositide phospholipase C activity of rat liver plasma membranes. Bivalent-cation and phospholipid requirements. Biochem. J. 248, 791–799.

    Google Scholar 

  • Taylor, C.W., Rahman, T., Tovey, S.C., Dedos, S.G., Taylor, E.J., Velamakanni, S., 2009. IP3 receptors: some lessons from DT40 cells. Immunol. Rev. 231(1), 23–44.

    Article  Google Scholar 

  • Visconti, P.E., 2009. Understanding the molecular basis of sperm capacitation through kinase design. Proc. Natl. Acad. Sci. USA 106, 667–668.

    Article  Google Scholar 

  • Wagner, J., Keizer, J., 1994. Effects of rapid buffers on Ca2+ on diffusion and Ca2+ oscillations. Biophys. J. 67, 447–456.

    Article  Google Scholar 

  • Walensky, L.D., Snyder, S.H., 1995. Inositol 1,4,5-trisphosphate receptors selectively localized to the acrosomes of mammalian sperm. J. Cell Biol. 130, 857–869.

    Article  Google Scholar 

  • Washington, T.M., Blum, J.J., Reed, M.C., Conn, M.P., 2004. A mathematical model for LH release in response to continuous and pulsatile exposure of gonadotrophs to GnRH. Theor. Biol. Med. Model 1, 1–17.

    Article  Google Scholar 

  • Watras, J., Bezprozvanny, I., Ehrlich, B.E., 1991. Inositol 1,4,5-trisphosphate-gated channels in cerebellum, presence of multiple conductance states. Eur. J. Neurosci. 11, 3239–3245.

    Google Scholar 

  • Wennemuth, G., Westenbroek, R.E., Xu, T., Hille, B., Babcock, D.F., 2000. Ca V 2.2 and Ca V 2.3(N- and R-type) Ca2+ channels in depolarization-evoked entry of Ca2+ into mouse sperm. Int. J. Biol. Chem. 275, 21210–21217.

    Article  Google Scholar 

  • Wennemuth, G., Babcock, D.F., Hille, B., 2003. Calcium clearance mechanisms of mouse sperm. J. Gen. Physiol. 122, 115–128.

    Article  Google Scholar 

  • Wuytack, F., Raeymaekers, L., Missiaen, L., 2002. Molecular physiology of the SERCA and SPCA pumps. Cell Calcium 32, 279–305.

    Article  Google Scholar 

  • Xia, J., Ren, D., 2009. Egg coat proteins activated calcium entry into mouse sperm via CATSPER channels. Biol. Reprod. 80, 1092–1098.

    Article  Google Scholar 

  • Xia, J., Reigada, D., Mitchell, C.H., Ren, D., 2007. CatSper channel-mediated Ca2+ entry into mouse sperm triggers a tail-to-head propagation. Biol. Reprod. 77, 551–559.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah D. Olson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, S.D., Suarez, S.S. & Fauci, L.J. A Model of CatSper Channel Mediated Calcium Dynamics in Mammalian Spermatozoa. Bull. Math. Biol. 72, 1925–1946 (2010). https://doi.org/10.1007/s11538-010-9516-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9516-5

Keywords

Navigation