Skip to main content
Log in

A Multiscale Theoretical Investigation of Electric Measurements in Living Bone

Piezoelectricity and Electrokinetics

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper presents a theoretical investigation of the multiphysical phenomena that govern cortical bone behaviour. Taking into account the piezoelectricity of the collagen–apatite matrix and the electrokinetics governing the interstitial fluid movement, we adopt a multiscale approach to derive a coupled poroelastic model of cortical tissue. Following how the phenomena propagate from the microscale to the tissue scale, we are able to determine the nature of macroscopically observed electric phenomena in bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, A., & Grodzinsky, A. (2009). Relevance of collagen piezoelectricity to Wolff’s law: A critical review. Med. Eng. Phys., 31, 733–741.

    Article  Google Scholar 

  • Anderson, J., & Eriksson, C. (1970). Piezoelectric properties of dry and wet bone. Nature, 227, 491–492.

    Article  Google Scholar 

  • Aschero, G., Gizdulich, P., & Mango, F. (1999). Statistical characterization of piezoelectric coefficient d23 in cow bone. J. Biomech., 32, 573–577.

    Article  Google Scholar 

  • Auriault, J. L. (1991). Heterogeneous medium is an equivalent macroscopic description possible? Int. J. Eng. Sci., 29, 785–795.

    Article  MATH  Google Scholar 

  • Auriault, J. L., & Adler, P. M. (1995). Taylor dispersion in porous media: Analysis by multiple scale expansions. Adv. Water Resour., 18, 217–226.

    Article  Google Scholar 

  • Auriault, J. L., & Sanchez-Palencia, E. (1977). Etude du comportment macroscopique d’un milieu poreux saturé déformable. J. Méc., 16, 575–603.

    MathSciNet  MATH  Google Scholar 

  • Bassett, C., Pawluk, R., & Becker, R. (1964). Effects of electric currents on bone in vivo. Nature, 204, 652–654.

    Article  Google Scholar 

  • Beretta, D., & Pollack, S. (1986). Ion concentration effects on the zeta potential of bone. J. Orthop. Res., 4, 337–341.

    Article  Google Scholar 

  • Biot, MA (1941). General theory of three-dimensional consolidation. J. Appl. Phys., 12, 155–164.

    Article  MATH  Google Scholar 

  • Buckwalter, J. A., Glimcher, M. J., Cooper, R. R., & Recker, R. (1995a). Bone biology. Part I: Structure, blood supply, cells, matrix, and mineralization. J. Bone Jt. Surg., Am. Vol., 77, 1256–1275.

    Google Scholar 

  • Buckwalter, J. A., Glimcher, M. J., Cooper, R. R., & Recker, R. (1995b). Bone biology. Part II: Formation, form, modeling, remodeling, and regulation of cell function. J. Bone Jt. Surg., Am. Vol., 77, 1276–1289.

    Google Scholar 

  • Bur, A. (1976). Measurements of the dynamic piezoelectric properties of bone as a function of temperature and humidity. J. Biomech., 9, 495–507.

    Article  Google Scholar 

  • Burger, E. H., & Klein-Nulend, J. (1999). Mechanotransduction in bone: Role of the lacuno-canalicular network. FASEB J., 13(Suppl), S101–112.

    Google Scholar 

  • Burger, E. H., Klein-Nulend, J., & Smit, T. H. (2003). Strain-derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon—a proposal. J. Biomech., 36, 1453–1459.

    Article  Google Scholar 

  • Cochran, G. V. B., Dell, D. G., Palmieri, V. R., Johnson, M. W., Otter, M. W., & Kadaba, M. P. (1989). An improved design of electrodes for measurement of streaming potentials on wet bone in vitro and in vivo. J. Biomech., 22, 745–750.

    Article  Google Scholar 

  • Cowin, S. C. (1999). Bone poroelasticity. J. Biomech., 32, 217–238.

    Article  Google Scholar 

  • Cowin, S. C., Weinbaum, S., & Zeng, Y. (1995). A case for bone canaliculi as the anatomical site of strain generated potentials. J. Biomech., 28, 1281–1297.

    Article  Google Scholar 

  • Cowin, S., Gailani, G., & Benalla, M. (2009). Hierarchical poroelasticity: Movement of interstitial fluid between porosity levels in bones. Philos. Trans. R. Soc. A, 367, 3401–3444.

    Article  MathSciNet  MATH  Google Scholar 

  • Crolet, J., & Racila, M. (2009). Elaboration of assumptions for the fluid problem at microscopic scale in sinupros, mathematical model of cortical bone. Math. Comput. Model., 49, 2182–2190.

    Article  MathSciNet  MATH  Google Scholar 

  • Derjaguin, B., Churaev, N., & Muller, V. (1987). Surface forces. New York: Plenum.

    Google Scholar 

  • Fukada, E., & Yasuda, I. (1957). On the piezoelectric effect of bone. J. Phys. Soc. Jpn., 12, 1158–1162.

    Article  Google Scholar 

  • Funk, R., Monsees, T., & Özkucur, N. (2009). Electromagnetic effects—From cell biology to medicine. Prog. Histochem. Cytochem., 43, 177–264.

    Article  Google Scholar 

  • Gailani, G., & Cowin, S. (2011). Ramp loading in Russian doll poroelasticity. J. Mech. Phys. Solids, 59, 103–120.

    Article  MathSciNet  Google Scholar 

  • Grodzinsky, A. (1983). Electromechanical and physicochemical properties of connective tissue. Crit. Rev. Biomed. Eng., 9, 133–199.

    Google Scholar 

  • Guzelsu, N., & Demiray, H. (1979). Electromechanical properties and related models of bone tissues: A review. Int. J. Eng. Sci., 17, 813–851.

    Article  MathSciNet  MATH  Google Scholar 

  • Guzelsu, N., & Walsh, W. (1990). Streaming potential of intact wet bone. J. Biomech., 23, 673–685.

    Article  Google Scholar 

  • Han, Y., Cowin, S. C., Schaffler, M. B., & Weinbaum, S. (2004). Mechanotransduction and strain amplification in osteocyte cell processes. Proc. Natl. Acad. Sci. USA, 101, 16 689–16,694.

    Article  Google Scholar 

  • Hastings, G., & Mahmud, F. (1988). Electrical effects in bone. J. Biomed. Eng., 10, 515–521.

    Article  Google Scholar 

  • Hastings, G., ElMessiery, M., & Rakowski, S. (1981). Mechano-electrical properties of bone. Biomaterials, 2, 225–233.

    Article  Google Scholar 

  • Hunter, R. (1981). Zeta potential in colloid science: principles and applications. San Diego: Academic Press.

    Google Scholar 

  • Johnson, M., Chakkalakal, D., Harper, R., & Katz, J. (1980). Comparison of the electromechanical effects in wet and dry bone. J. Biomech., 13, 437–442.

    Article  Google Scholar 

  • Justus, R., & Luft, J. (1970). A mechanochemical hypothesis for bone remodeling induced by mechanical stress. Calcif. Tissue Int., 5, 222–235.

    Article  Google Scholar 

  • Kaiser, J., Lemaire, T., Naili, S., & Sansalone, V. (2009). Multiscale modelling of fluid flow in charged porous media including cationic exchanges: application to bone tissues. C. R., Méc., 337, 768–775.

    Article  MATH  Google Scholar 

  • Lemaire, T., Moyne, C., Stemmelen, D., & Murad, M. (2002). Electro-chemo-mechanical couplings in swelling clays derived by homogenization: Electroviscous effects and Onsager’s relations. In Poromechanics II (pp. 489–500). Lisse: Balkema Publishers.

    Google Scholar 

  • Lemaire, T., Naili, S., & Rémond, A. (2006). Multi-scale analysis of the coupled effects governing the movement of interstitial fluid in cortical bone. Biomech. Model. Mechanobiol., 5, 39–52.

    Article  Google Scholar 

  • Lemaire, T., Moyne, C., & Stemmelen, D. (2007). Modelling of electro-osmosis in clayey materials including ph effects. Phys. Chem. Earth Parts A/B/C, 32, 441–452.

    Article  Google Scholar 

  • Lemaire, T., Borocin, F., & Naili, S. (2008a). Mechanotransduction of bone remodelling: role of micro-cracks at the periphery of osteons. C. R., Méc., 336, 354–362.

    Article  MATH  Google Scholar 

  • Lemaire, T., Naili, S., & Rémond, A. (2008b). Study of the influence of fibrous pericellular matrix in the cortical interstitial fluid movement. J. Biomech. Eng., 130, 11,001,1–11.

    Article  Google Scholar 

  • Lemaire, T., Kaiser, J., Naili, S., & Sansalone, V. (2010a). Modelling of the transport in charged porous media including ionic exchanges. Mech. Res. Commun., 37, 495–499.

    Article  Google Scholar 

  • Lemaire, T., Sansalone, V., & Naili, S. (2010b). Multiphysical modelling of fluid transport through osteo-articular media. An. Acad. Bras. Cienc., 82, 127–144.

    Article  MATH  Google Scholar 

  • Lemaire, T., Capiez-Lernout, E., Kaiser, J., Naili, S., & Sansalone, V. (2011). What is the importance of multiphysical phenomena in bone remodelling signals expression? A multiscale perspective. J. Mech. Behav. Biomed. Mater. (in press).

  • Martin, R. B. (2002). Is all cortical bone remodeling initiated by microdamage? Bone, 30, 8–13.

    Article  Google Scholar 

  • Martin, R. B., Burr, D. B., & Sharkey, N. A. (1998). Skeletal tissue mechanics (1st ed.). New York: Springer.

    Google Scholar 

  • Miara, B., Rohan, E., Zidi, M., & Labat, B. (2005). Piezomaterials for bone regeneration design–homogenization approach. J. Mech. Phys. Solids, 53, 2529–2556.

    Article  MathSciNet  MATH  Google Scholar 

  • Moyne, C., & Murad, M. A. (2002). Electro-chemo-mechanical couplings in swelling clays derived from a micro/macro-homogenization procedure. Int. J. Solids Struct., 39, 6159–6190.

    Article  MATH  Google Scholar 

  • Nguyen, V. H., Lemaire, T., & Naili, S. (2009). Anisotropic poroelastic hollow cylinders with damaged periphery under harmonically axial loading: Relevance to bone remodelling. Multidiscip. Model. Mater. Struct., 5, 205–222.

    Google Scholar 

  • Nguyen, V. H., Lemaire, T., & Naili, S. (2010). Poroelastic behaviour of cortical bone under harmonic axial loading: Theoretical study at the osteonal tissue scale. Med. Eng. Phys., 32, 384–390.

    Article  Google Scholar 

  • Nguyen, V. H., Lemaire, T., & Naili, S. (2011). Influence of interstitial bone microcracks on strain-induced fluid flow. Biomech. Model. Mechanobiol. doi:10.1007/s10237-011-0287-1.

    Google Scholar 

  • Otter, M., Goheen, S., & Williams, W. (1988). Streaming potentials in chemically modified bone. J. Orthop. Res., 6, 346–359.

    Article  Google Scholar 

  • Piccolino, M. (1998). Animal electricity and the birth of electrophysiology: The legacy of Luigi Galvani. Brain Res. Bull., 46, 381–407.

    Article  Google Scholar 

  • Pollack, S., Petrov, N., Salzstein, R., Brankov, G., & Blagoeva, R. (1984). An anatomical model for streaming potentials in osteons. J. Biomech., 17, 627–636.

    Article  Google Scholar 

  • Reinish, G., & Nowick, A. (1975). Piezoelectric properties of bone as functions of moisture content. Nature, 253, 626–627.

    Article  Google Scholar 

  • Rémond, A., & Naili, S. (2005). Transverse isotropic poroelastic osteon model under cyclic loading. Mech. Res. Commun., 32, 645–651.

    Article  MATH  Google Scholar 

  • Rémond, A., Naili, S., & Lemaire, T. (2008). Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: A finite element study. Biomech. Model. Mechanobiol., 7, 487–495.

    Article  Google Scholar 

  • Salzstein, R. A., & Pollack, S. R. (1987). Electromechanical potentials in cortical bone—ii. Experimental analysis. J. Biomech., 20, 271–280.

    Article  Google Scholar 

  • Shelley, M. (1818). Frankenstein, or, the modern Prometheus. Lackington, Hughes, Harding, Mavor, & Jones.

  • Taton, T. (2001). Boning up on biology. Nature, 412, 491–492.

    Article  Google Scholar 

  • Telega, J., & Wojnar, R. (2000). Flow of electrolyte through porous piezoelectric medium: Macroscopic equations. C. R. Acad. Sci., Sér. 2, Méc. Phys. Chim. Astron., 328, 225–230.

    MATH  Google Scholar 

  • Wang, L., Wang, Y., Han, Y., Henderson, S. C., Majeska, R. J., Weinbaum, S., & Schaffler, M. B. (2005). In situ measurement of solute transport in the bone lacunar-canalicular system. Proc. Natl. Acad. Sci. USA, 102, 11,911–11,916.

    Google Scholar 

  • Westbroek, I., Ajubi, N. E., Ablas, M. J., Semeins, C. M., Klein-Nulend, J., Burger, E. H., & Nijweide, P. J. (2000). Differential stimulation of prostaglandin g/h synthase-2 in osteocytes and other osteogenic cells by pulsating fluid flow. Biochem. Biophys. Res. Commun., 268, 414–419.

    Article  Google Scholar 

  • Wolff, J. (1892). Das Gesetz der Transformation der Knochen. Berlin: Hirschwald.

    Google Scholar 

  • Yasuda, I. (1964). Piezoelectricity of living bone. Kyoto Furitsu Ika Daigaku Zasshi, 53, 2019–2024.

    Google Scholar 

  • You, L., Cowin, S. C., Schaffler, M. B., & Weinbaum, S. (2001). A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J. Biomech., 34, 1375–1386.

    Article  Google Scholar 

  • You, L. D., Weinbaum, S., Cowin, S. C., & Schaffler, M. B. (2004). Ultrastructure of the osteocyte process and its pericellular matrix. Anat. Rec. A, 278A(2), 505–513.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Lemaire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemaire, T., Capiez-Lernout, E., Kaiser, J. et al. A Multiscale Theoretical Investigation of Electric Measurements in Living Bone. Bull Math Biol 73, 2649–2677 (2011). https://doi.org/10.1007/s11538-011-9641-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9641-9

Keywords

Navigation