Skip to main content
Log in

Catalysis in Reaction Networks

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We define catalytic networks as chemical reaction networks with an essentially catalytic reaction pathway: one which is “on” in the presence of certain catalysts and “off” in their absence. We show that examples of catalytic networks include synthetic DNA molecular circuits that have been shown to perform signal amplification and molecular logic. Recall that a critical siphon is a subset of the species in a chemical reaction network whose absence is forward invariant and stoichiometrically compatible with a positive point. Our main theorem is that all weakly-reversible networks with critical siphons are catalytic. Consequently, we obtain new proofs for the persistence of atomic event-systems of Adleman et al., and normal networks of Gnacadja. We define autocatalytic networks, and conjecture that a weakly-reversible reaction network has critical siphons if and only if it is autocatalytic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adleman, L., Gopalkrishnan, M., Huang, M.-D., Moisset, P., & Reishus, D. (2008). On the mathematics of the law of mass action. arXiv:0810.1108.

  • Anderson, D. F. (2008). Global asymptotic stability for a class of nonlinear chemical equations. SIAM J. Appl. Math., 68(5), 1464–1476.

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson, D. F., & Shiu, A. (2010). The dynamics of weakly reversible population processes near facets. SIAM J. Appl. Math., 70(6), 1840–1858.

    Article  MathSciNet  MATH  Google Scholar 

  • Angeli, D., De Leenheer, P., & Sontag, E. D. (2007). A Petri net approach to the study of persistence in chemical reaction networks. Math. Biosci., 210(2), 598–618.

    Article  MathSciNet  MATH  Google Scholar 

  • Ceruzzi, P. E. (1981). The early computers of Konrad Zuse, 1935 to 1945. IEEE Ann. Hist. Comput., 3(3), 241–262.

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, D., Little, J., & O’Shea, D. (1991). Ideals, varieties and algorithms: an introduction to computational algebraic geometry and commutative algebra. Berlin: Springer.

    Google Scholar 

  • Craciun, G., Dickenstein, A., Shiu, A., & Sturmfels, B. (2009). Toric dynamical systems. J. Symb. Comput., 44(11), 1551–1565. In Memoriam Karin Gatermann.

    Article  MathSciNet  MATH  Google Scholar 

  • Eisenbud, D., & Sturmfels, B. (1996). Binomial ideals. Duke Math. J., 84(1), 1–45.

    Article  MathSciNet  MATH  Google Scholar 

  • Feinberg, M. (1972a). Complex balancing in general kinetic systems. Arch. Ration. Mech. Anal., 49.

  • Feinberg, M. (1972b). On chemical kinetics of a certain class. Arch. Ration. Mech. Anal., 46.

  • Feinberg, M. (1979). Lectures on chemical reaction networks. http://www.che.eng.ohio-state.edu/~FEINBERG/LecturesOnReactionNetworks/.

  • Feinberg, M. (1987). Chemical reaction network structure and the stability of complex isothermal reactors–i. the deficiency zero and deficiency one theorems. Chem. Eng. Sci., 42(10), 2229–2268.

    Article  Google Scholar 

  • Feinberg, M. (1995). The existence and uniqueness of steady states for a class of chemical reaction networks. Arch. Ration. Mech. Anal., 132, 311–370.

    Article  MathSciNet  MATH  Google Scholar 

  • Gnacadja, G. (2009). Univalent positive polynomial maps and the equilibrium state of chemical networks of reversible binding reactions. Adv. Appl. Math., 43(4), 394–414.

    Article  MathSciNet  MATH  Google Scholar 

  • Gnacadja, G. (2010). Reachability, persistence and constructive chemical networks. Preprint, available at http://math.gillesgnacadja.info/files/ConstructiveCRNT.html.

  • Gunawardena, J. (2003). Chemical reaction network theory for in-silico biologists. http://vcp.med.harvard.edu/papers/crnt.pdf.

  • Horn, F. J. M. (1972). Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Ration. Mech. Anal., 49.

  • Horn, F. J. M. (1974). The dynamics of open reaction systems. In Mathematical aspects of chemical and biochemical problems and quantum chemistry, Proc. SIAM-AMS sympos. appl. math., New York, vol. VIII.

    Google Scholar 

  • Horn, F. J. M., & Jackson, R. (1972). General mass action kinetics. Arch. Ration. Mech. Anal., 49, 81–116.

    Article  MathSciNet  Google Scholar 

  • Hungerford, T. W. (1980). Algebra. New York: Springer.

    Book  MATH  Google Scholar 

  • Miller, E., & Sturmfels, B. (2005). Combinatorial commutative algebra. Berlin: Springer.

    Google Scholar 

  • Mumford, D. (1988). The red book of varieties and schemes. Berlin: Springer.

    MATH  Google Scholar 

  • Qian, L., & Winfree, E. (2011). A simple DNA gate motif for synthesizing large-scale circuits. J. R. Soc. Interface.

  • Shinar, G., Alon, U., & Feinberg, M. (2009). Sensitivity and robustness in chemical reaction networks. SIAM J. Appl. Math., 69(4), 977–998.

    Article  MathSciNet  MATH  Google Scholar 

  • Shiu, A., & Sturmfels, B. (2010). Siphons in chemical reaction networks. Bull. Math. Biol.

  • Sontag, E. D. (2001). Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction. IEEE Trans. Autom. Control, 46, 1028–1047.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, D. Y., Turberfield, A. J., Yurke, B., & Winfree, E. (2007). Engineering entropy-driven reactions and networks catalyzed by DNA. Science, 318(5853), 1121–1125.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Gopalkrishnan.

Additional information

M. Gopalkrishnan’s part of this work was supported by NSF DMS-0943760.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopalkrishnan, M. Catalysis in Reaction Networks. Bull Math Biol 73, 2962–2982 (2011). https://doi.org/10.1007/s11538-011-9655-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9655-3

Keywords

Navigation