Skip to main content
Log in

A “Trimer of Dimers”—Based Model for the Chemotactic Signal Transduction Network in Bacterial Chemotaxis

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The network that controls chemotaxis in Escherichia coli is one of the most completely characterized signal transduction systems to date. Receptor clustering accounts for characteristics such as high sensitivity, precise adaptation over a wide dynamic range of ligand concentrations, and robustness to variations in the amounts of intracellular proteins. To gain insights into the structure-function relationship of receptor clusters and understand the mechanism behind the high-performance signaling, we develop and analyze a model for a single trimer of dimers. This new model extends an earlier model (Spiro et al. in Proc. Natl. Acad. Sci. 94:7263–7268, 1997) to incorporate the recent experimental findings that the core structure of receptor clusters is the trimer of receptor dimers. We show that the model can reproduce most of the experimentally-observed behaviors, including excitation, adaptation, high sensitivity, and robustness to parameter variations. In addition, the model makes a number of new predictions as to how the adaptation time varies with the expression level of various proteins involved in signal transduction. Our results provide a more mechanistically-based description of the structure-function relationship for the signaling system, and show the key role of the interaction among dimer members of the trimer in the chemotactic response of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Usually the distinction between taxis and kinesis is ignored, and we follow this convention here, and refer to the process as chemotaxis when the signal is a chemical.

  2. Of course, we do this for the analogous equations for other (m,n) as well, but we will not repeat this qualifier hereafter.

References

  • Albert, R., Chiu, Y., & Othmer, H. G. (2004). Dynamic receptor team formation can explain the high signal transduction gain in Escherichia coli. Biophys. J., 86(5), 2650–2659.

    Article  Google Scholar 

  • Alon, U., Camarena, L., Surette, M. G., Arcas, B. A., Liu, Y., Leibler, S., & Stock, J. B. (1998). Response regulator output in bacterial chemotaxis. EMBO J., 17, 4238–4248.

    Article  Google Scholar 

  • Alon, U., Surette, M. G., Barkai, N., & Leibler, S. (1999). Robustness in bacterial chemotaxis. Nature, 15, 168–171.

    Google Scholar 

  • Ames, P., Studdert, C. A., Reiser, R. H., & Parkinson, J. S. (2002). Collaborative signaling by mixed chemoreceptor teams in Escherichia coli. Proc. Natl Acad. Sci., 99(10), 7060.

    Article  Google Scholar 

  • Barkai, N., & Leibler, S. (1997). Robustness in simple biochemical networks. Nature, 387(6636), 913–917.

    Article  Google Scholar 

  • Berg, H. C. (1975). How bacteria swim. Sci. Am., 233, 36–44.

    Article  Google Scholar 

  • Berg, H. C., & Brown, D. A. (1972). Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature, 239(5374), 500–504.

    Article  Google Scholar 

  • Berg, H. C., & Tedesco, P. M. (1975). Transient response to chemotactic stimuli in Escherichia coli. Proc. Natl Acad. Sci., 72(8), 3235–3239.

    Article  Google Scholar 

  • Bjorkman, A. M., Dunten, P., Sandgren, M. O. J., Dwarakanath, V. N., & Mowbray, S. L. (2001). Mutations that affect ligand binding to the Escherichia coli aspartate receptor. J. Biol. Chem., 276(4), 2808–2815.

    Article  Google Scholar 

  • Block, S. M., Segall, J. E., & Berg, H. C. (1982). Impulse responses in bacterial chemotaxis. Cell, 31(1), 215–226.

    Article  Google Scholar 

  • Boldog, T., Grimme, S., Li, M., Sligar, S. G., & Hazelbauer, G. L. (2006). Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proc. Natl Acad. Sci., 103(31), 11509.

    Article  Google Scholar 

  • Borkovich, K. A., Alex, L. A., & Simon, M. I. (1992). Attenuation of sensory receptor signaling by covalent modification. Proc. Natl Acad. Sci., 89(15), 6756–6760.

    Article  Google Scholar 

  • Bornhorst, J. A., & Falke, J. J. (2001). Evidence that both ligand binding and covalent adaptation drive a two-state equilibrium in the aspartate receptor signaling complex. J. Gen. Physiol., 118(6), 693–710.

    Article  Google Scholar 

  • Bornhorst, J. A., & Falke, J. J. (2003). Quantitative analysis of aspartate receptor signaling complex reveals that the homogeneous two-state model is inadequate: development of a heterogeneous two-state model. J. Mol. Biol., 326(5), 1597–1614.

    Article  Google Scholar 

  • Bourret, R. B., & Stock, A. M. (2002). Molecular information processing: lessons from bacterial chemotaxis. J. Biol. Chem., 277(12), 9625–9628.

    Article  Google Scholar 

  • Bourret, R. B., Borkovich, K. A., & Simon, M. I. (1991). Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu. Rev. Biochem., 60(1), 401–441.

    Article  Google Scholar 

  • Boyd, A., & Simon, M. I. (1980). Stimulus-induced methylation generates multiple electrophoretic forms of methyl-accepting chemotaxis proteins in Escherichia coli. J. Bacteriol., 143, 809–815.

    Google Scholar 

  • Bray, D., Levin, M. D., & Morton-Firth, C. J. (1998). Receptor clustering as a cellular mechanism to control sensitivity. Nature, 393(6680), 85–88.

    Article  Google Scholar 

  • Briegel, A., Ding, H. J., Li, Z., Werner, J., Gitai, Z., Dias, D. P., Jensen, R. B., & Jensen, G. J. (2008). Location and architecture of the Caulobacter crescentus chemoreceptor array. Mol. Microbiol., 69(1), 30–41.

    Article  Google Scholar 

  • Briegel, A., Ortega, D. R., Tocheva, E. I., Wuichet, K., Li, Z., Chen, S., Müller, A., Iancu, C. V., Murphy, G. E., Dobro, M. J., et al. (2009). Universal architecture of bacterial chemoreceptor arrays. Proc. Natl Acad. Sci., 106(40), 17181–17186.

    Article  Google Scholar 

  • Cardozo, M. J., Massazza, D. A., Parkinson, J. S., & Studdert, C. A. (2010). Disruption of chemoreceptor signalling arrays by high levels of chew, the receptor–kinase coupling protein. Mol. Microbiol., 75(5), 1171–1181.

    Article  Google Scholar 

  • Duke, T. A. J., & Bray, D. (1999). Heightened sensitivity of a lattice of membrane receptors. Proc. Natl Acad. Sci., 96(18), 10104–10108.

    Article  Google Scholar 

  • Endres, R. G., & Wingreen, N. S. (2006). Precise adaptation in bacterial chemotaxis through “assistance neighborhoods”. Proc. Natl Acad. Sci., 103(35), 13040.

    Article  Google Scholar 

  • Endres, R. G., Falke, J. J., & Wingreen, N. S. (2007). Chemotaxis receptor complexes: from signaling to assembly. PLoS Comput. Biol., 3(7), 1385–1393.

    Article  MathSciNet  Google Scholar 

  • Francis, N. R., Levit, M. N., Shaikh, T. R., Melanson, L. A., Stock, J. B., & DeRosier, D. J. (2002). Subunit organization in a soluble complex of Tar, CheW, and CheA by electron microscopy. J. Biol. Chem., 277(39), 36755–36759.

    Article  Google Scholar 

  • Francis, N. R., Wolanin, P. M., Stock, J. B., DeRosier, D. J., & Thomas, D. R. (2004). Three-dimensional structure and organization of a receptor/signaling complex. Proc. Natl Acad. Sci., 101(50), 17480–17485.

    Article  Google Scholar 

  • Heinrich, R., Schuster, S., & Holzhutter, H. G. (1991). Mathematical analysis of enzymic reaction systems using optimization principles. Eur. J. Biochem., 201(1), 1–21.

    Article  Google Scholar 

  • Keymer, J. E., Endres, R. G., Skoge, M., Meir, Y., & Wingreen, N. S. (2006). Chemosensing in Escherichia coli: two regimes of two-state receptors. Proc. Natl Acad. Sci., 103(6), 1786–1791.

    Article  Google Scholar 

  • Khursigara, C. M., Wu, X., & Subramaniam, S. (2008). Chemoreceptors in Caulobacter crescentus: trimers of receptor dimers in a partially ordered hexagonally packed array. J. Bacteriol., 190(20), 6805–6810.

    Article  Google Scholar 

  • Kim, K. K., Yokota, H., & Kim, S. H. (1999). Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature, 400(6746), 787.

    Article  Google Scholar 

  • Kollmann, M., Loevdok, L., Bartholome, K., Timmer, J., & Sourjik, V. (2005). Design principles of a bacterial signalling network. Nature, 438(7067), 504–507.

    Article  Google Scholar 

  • Koshland, D. E. (1980). Bacterial chemotaxis as a model behavioral system. New York: Raven Press.

    Google Scholar 

  • Larsen, S. H., Reader, R. W., Kort, E. N., Tso, W. W., & Adler, J. (1974). Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature, 249(5452), 74–77.

    Article  Google Scholar 

  • Lee, C. H., & Othmer, H. G. (2010). A multi-time-scale analysis of chemical reaction networks: I. Deterministic systems. J. Math. Biol., 60(3), 387–450.

    Article  MathSciNet  Google Scholar 

  • Levit, M. N., & Stock, J. B. (2002). Receptor methylation controls the magnitude of stimulus-response coupling in bacterial chemotaxis. J. Biol. Chem., 277(39), 36760–36765.

    Article  Google Scholar 

  • Levit, M. N., Grebe, T. W., & Stock, J. B. (2002). Organization of the receptor-kinase signaling array that regulates Escherichia coli chemotaxis. J. Biol. Chem., 277(39), 36748–36754.

    Article  Google Scholar 

  • Li, M., & Hazelbauer, G. L. (2004). Cellular stoichiometry of the components of the chemotaxis signaling complex. J. Bacteriol., 186(12), 3687–3694.

    Article  Google Scholar 

  • Li, G., & Weis, R. M. (2000). Covalent modification regulates ligand binding to receptor complexes in the chemosensory system of Escherichia coli. Cell, 100(3), 357–365.

    Article  Google Scholar 

  • Li, J., Swanson, R. V., Simon, M. I., & Weis, R. M. (1995). Response regulators CheB and CheY exhibit competitive binding to the kinase CheA. Biochemistry, 34(45), 14626–14636.

    Article  Google Scholar 

  • Liberman, L., Berg, H. C., & Sourjik, V. (2004). Effect of chemoreceptor modification on assembly and activity of the receptor-kinase complex in Escherichia coli. J. Bacteriol., 186(19), 6643–6646.

    Article  Google Scholar 

  • Liu, Y., Levit, M., Lurz, R., Surette, M. G., & Stock, J. B. (1997). Receptor-mediated protein kinase activation and the mechanism of transmembrane signaling in bacterial chemotaxis. EMBO J., 16(24), 7231.

    Article  Google Scholar 

  • Lřvdok, L., Kollmann, M., & Sourjik, V. (2007). Co-expression of signaling proteins improves robustness of the bacterial chemotaxis pathway. J. Biotechnol., 129(2), 173–180.

    Article  Google Scholar 

  • Maddock, J. R., & Shapiro, L. (1993). Polar location of the chemoreceptor complex in the Escherichia coli cell. Science, 259(5102), 1717–1723.

    Article  Google Scholar 

  • Mello, B. A., & Tu, Y. (2003). Quantitative modeling of sensitivity in bacterial chemotaxis: the role of coupling among different chemoreceptor species. Proc. Natl Acad. Sci., 100(14), 8223–8228.

    Article  Google Scholar 

  • Mello, B. A., & Tu, Y. (2005). An allosteric model for heterogeneous receptor complexes: understanding bacterial chemotaxis responses to multiple stimuli. Proc. Natl Acad. Sci., 102(48), 17354–17359.

    Article  Google Scholar 

  • Mello, B. A., Shaw, L., & Tu, Y. (2004). Effects of receptor interaction in bacterial chemotaxis. Biophys. J., 87(3), 1578–1595.

    Article  Google Scholar 

  • Monod, J., Wyman, J., & Changeux, J. P. (1965). On the nature of allosteric transitions: a plausible model. J. Mol. Biol., 12, 88–118.

    Article  Google Scholar 

  • Morton-Firth, C. J., Shimizu, T. S., & Bray, D. (1999). A free-energy-based stochastic simulation of the Tar receptor complex. J. Mol. Biol., 286(4), 1059–1074.

    Article  Google Scholar 

  • Ninfa, E. G., Stock, A., Mowbray, S., & Stock, J. (1991). Reconstitution of the bacterial chemotaxis signal transduction system from purified components. J. Biol. Chem., 266(15), 9764–9770.

    Google Scholar 

  • Park, M. J., Dahlquist, F. W., & Doyle, F. J. III (2007). Simultaneous high gain and wide dynamic range in a model of bacterial chemotaxis. IET Syst. Biol., 1(4), 222–229.

    Article  Google Scholar 

  • Rao, C. V., Frenklach, M., & Arkin, A. P. (2004a). An allosteric model for transmembrane signaling in bacterial chemotaxis. J. Mol. Biol., 343(2), 291–303.

    Article  Google Scholar 

  • Rao, C. V., Kirby, J. R., & Arkin, A. P. (2004b). Design and diversity in bacterial chemotaxis: a comparative study in Escherichia coli and Bacillus subtilis. PLoS Biol., 2, 239–252.

    Article  Google Scholar 

  • Scharf, B. E., Fahrner, K. A., Turner, L., & Berg, H. C. (1998). Control of direction of flagellar rotation in bacterial chemotaxis. Proc. Natl Acad. Sci., 95(1), 201–206.

    Article  Google Scholar 

  • Segall, J. E., Block, S. M., & Berg, H. C. (1986). Temporal comparisons in bacterial chemotaxis. Proc. Natl Acad. Sci., 83(23), 8987–8991.

    Article  Google Scholar 

  • Shi, Y., & Duke, T. (1998). Cooperative model of bacterial sensing. Phys. Rev. E, 58(5), 6399–6406.

    Article  Google Scholar 

  • Shimizu, T. S., Aksenov, S. V., & Bray, D. (2003). A spatially extended stochastic model of the bacterial chemotaxis signalling pathway. J. Mol. Biol., 329(2), 291–309.

    Article  Google Scholar 

  • Silverman, M., & Simon, M. (1974). Flagellar rotation and the mechanism of bacterial motility. Nature, 249(5452), 73–74.

    Article  Google Scholar 

  • Silversmith, R. E., Smith, J. G., Guanga, G. P., Les, J. T., & Bourret, R. B. (2001). Alteration of a nonconserved active site residue in the chemotaxis response regulator CheY affects phosphorylation and interaction with CheZ. J. Biol. Chem., 276(21), 18478–18484.

    Article  Google Scholar 

  • Simms, S. A., Keane, M. G., & Stock, J. (1985). Multiple forms of the CheB methylesterase in bacterial chemosensing. J. Biol. Chem., 260(18), 10161–10168.

    Google Scholar 

  • Simms, S. A., Stock, A. M., & Stock, J. B. (1987). Purification and characterization of the S-adenosylmethionine: glutamyl methyltransferase that modifies membrane chemoreceptor proteins in bacteria. J. Biol. Chem., 262(18), 8537–8543.

    Google Scholar 

  • Sourjik, V., & Berg, H. C. (2002a). Receptor sensitivity in bacterial chemotaxis. Proc. Natl Acad. Sci., 99(1), 123–127.

    Article  Google Scholar 

  • Sourjik, V., & Berg, H. C. (2002b). Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc. Natl Acad. Sci., 99(20), 12669–12674.

    Article  Google Scholar 

  • Sourjik, V., & Berg, H. C. (2004). Functional interactions between receptors in bacterial chemotaxis. Nature, 428(6981), 437–441.

    Article  Google Scholar 

  • Spiro, P. A., Parkinson, J. S., & Othmer, H. G. (1997). A model of excitation and adaptation in bacterial chemotaxis. Proc. Natl Acad. Sci., 94(14), 7263–7268.

    Article  Google Scholar 

  • Spudich, J. L., & Koshland, D. E. (1975). Quantitation of the sensory response in bacterial chemotaxis. Proc. Natl Acad. Sci., 72(2), 710–713.

    Article  Google Scholar 

  • Starrett, D. J., & Falke, J. J. (2005). Adaptation mechanism of the aspartate receptor: electrostatics of the adaptation subdomain play a key role in modulating kinase activity. Biochemistry, 44(5), 1550.

    Article  Google Scholar 

  • Stewart, R. C., Jahreis, K., & Parkinson, J. S. (2000). Rapid phosphotransfer to CheY from a CheA protein lacking the CheY-binding domain. Biochemistry, 39(43), 13157–13165.

    Article  Google Scholar 

  • Stock, J. B. (1994). Regulation of cellular signal transduction pathways by desensitization and amplification. New York: Wiley.

    Google Scholar 

  • Stock, J. B., Lukat, G. S., & Stock, A. M. (1991). Bacterial chemotaxis and the molecular logic of intracellular signal transduction networks. Annu. Rev. Biophys. Biophys. Chem., 20(1), 109–136.

    Article  Google Scholar 

  • Studdert, C. A., & Parkinson, J. S. (2004). Crosslinking snapshots of bacterial chemoreceptor squads. Proc. Natl Acad. Sci., 101(7), 2117–2122.

    Article  Google Scholar 

  • Studdert, C. A., & Parkinson, J. S. (2005). Insights into the organization and dynamics of bacterial chemoreceptor clusters through in vivo crosslinking studies. Proc. Natl Acad. Sci., 102(43), 15623–15628.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Sandy Parkinson and David Odde for helpful discussions at various stages of the model development. This work was supported by NIH grant GM029123 to HGO and by the University of Minnesota Supercomputing Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans G. Othmer.

Appendix: Sensitivity Analysis

Appendix: Sensitivity Analysis

We perform sensitivity analysis for four steps of the signaling pathway—ligand binding, kinase activity regulation, phosphorylation and phosphoryl transfer in the cheRcheB mutant system where expression of CheR and CheB is suppressed and the methylation states of receptors are engineered and do not vary. The mutant cells can respond to but not adapt to chemoattractants. The involved chemical reactions in the system only lie in one slice (whose methylation level is the fixed one) of the network depicted in Fig. 1 excluding CheB-involved phosphoryl transfer. In the analysis, we fix the state at QEQE, and thus the reaction network lies in the m=6 slice in Fig. 1 and the corresponding m=6 parameter sets in Tables 1 and 3 are used in computation. For simplicity, the subindex m of the signaling complex variables is omitted in the section.

In the network, the ligand binding and kinase activity regulation transitions are much faster than autophosphorylation and phosphoryl transfer. Therefore, we apply the QSSA and dissect the network into two relatively independent parts. In the first one, we consider redistribution of signaling complexes in the ligand binding states induced by a chemoattractant stimulus. We use T n to denote the amount of the signaling complexes with n ligands bound, regardless of the activity state (\(T_{n}=T^{i}_{n}+T^{a}_{n}+T^{p}_{n}\)). The methylation state is fixed at QEQE and the subindex m is dropped. T t denotes the conserved total concentration of signaling complexes. The equations that govern the evolution of the amounts in four binding states of signaling complexes are as follows:

(49)
(50)
(51)
(52)

The steady-state solution of ligand occupancy is

(53)

We assume that when redistribution of signaling complexes in the activity states takes place, the ligand binding transitions have reached equilibrium. Then simply, \(T^{i}_{n}=(1-p_{n})T_{n}\), and \(T^{a}_{n}+T^{p}_{n}=p_{n}T_{n}\), where p n is the probability of the signaling complex with n ligands bound being active. So, the steady-state solution of activity is

(54)

In the second part, we consider two slow transitions, redistribution of the active signaling complexes in the unphosphorylated and phosphorylated states, and phosphoryl transfer to CheY. We use T i, T a, and T p to denote the amounts of the inactive, active-unphosphorylated and active-phosphorylated complexes, respectively, and then \(T^{a}=\sum_{n=0}^{3}T^{a}_{n}\), \(T^{p}=\sum_{n=0}^{3}T^{p}_{n}\), and \(T^{a}_{n}+T^{p}_{n}=p_{n}T_{n}\) hold. The governing equations on T a, T p. and Y p are as follows:

(55)
(56)
(57)
(58)
(59)

The steady-state solutions of T p and Y p are

(60)
(61)

Finally, we apply the definition of dimensionless sensitivity and obtain S(O|L), S(A|O), S(T p|A), and S(Y p |T p) as Eqs. (15)–(18) in the text, respectively.

For comparison, we perform a similar analysis in the case of a signaling complex containing a receptor dimer instead of a trimer of receptor dimers. The occupancy and activity are

(62)
(63)

The sensitivities of ligand binding and activity regulation are

(64)
(65)

The sensitivities of the remaining steps are the same as Eqs. (17) and (18) in the text. The variation in the composition of a signaling complex does not change the formula of the downstream sensitivities, but we need adjust the values of the rate constants in the CheA related reactions due to the change in the stoichiometry of receptors and CheA, and quantitatively it would rescale the downstream sensitivities.

Using a similar technique, we perform a parametric sensitivity analysis for the upstream signaling pathway. Specially, we have interests in the sensitivities of receptor occupancy to ligand dissociation constant \(S(O|K_{d_{i}})\) and to cooperativity in ligand affinity S(O|t i ), where \(t_{i}=K_{d_{i}}/K_{d_{i+1}}\) (i=1,2), and in the sensitivities of receptor activity to ligand dissociation constant \(S(A|K_{d_{i}})\), to cooperativity in ligand affinity S(A|t i ), to probability of being active S(A|p i ), and to cooperativity in activity inhibition S(A|s i ), where s i =p i−1/p i (i=1,2,3). The formula are Eqs. (66) to (82).

(66)
(67)
(68)
(69)
(70)
(71)
(72)
(73)
(74)
(75)
(76)
(77)
(78)
(79)
(80)
(81)
(82)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, X., Othmer, H.G. A “Trimer of Dimers”—Based Model for the Chemotactic Signal Transduction Network in Bacterial Chemotaxis. Bull Math Biol 74, 2339–2382 (2012). https://doi.org/10.1007/s11538-012-9756-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9756-7

Keywords

Navigation