Skip to main content

Advertisement

Log in

Transcriptional Bursting Diversifies the Behaviour of a Toggle Switch: Hybrid Simulation of Stochastic Gene Expression

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Hybrid models for gene expression combine stochastic and deterministic representations of the underlying biophysical mechanisms. According to one of the simplest hybrid formalisms, protein molecules are produced in randomly occurring bursts of a randomly distributed size while they are degraded deterministically. Here, we use this particular formalism to study two key regulatory motifs—the autoregulation loop and the toggle switch. The distribution of burst times is determined and used as a basis for the development of exact simulation algorithms for gene expression dynamics. For the autoregulation loop, the simulations are compared to an analytic solution of a master equation. Simulations of the toggle switch reveal a number of qualitatively distinct scenarios with implications for the modelling of cell-fate selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Algorithm 1
Fig. 2
Algorithm 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Alternatively, n>0 could be required in place of a 1>0, with a 1<0 corresponding to positive feedback.

References

  • Alon, U. (2007). An introduction to systems biology: design principles of biological circuits. London: Chapman & Hall/CRC.

    Google Scholar 

  • Andrecut, M., & Kauffman, S. A. (2006). Noise in genetic toggle switch models. J. Int. Bioinform, 23.

  • Andrecut, M., Halley, J. D., Winkler, D. A., & Huang, S. (2011). A general model for binary cell fate decision gene circuits with degeneracy: indeterminacy and switch behavior in the absence of cooperativity. PLoS ONE, 6, e19358.

    Article  Google Scholar 

  • Bicout, D. J. (1997). Green’s functions and first passage time distributions for dynamic instability of microtubules. Phys. Rev. E, 56(6), 6656–6667.

    Article  Google Scholar 

  • Bobrowski, A., Lipniacki, T., Pichór, K., & Rudnicki, R. (2007). Asymptotic behavior of distributions of mrna and protein levels in a model of stochastic gene expression. J. Math. Anal. Appl., 333, 753–769.

    Article  MathSciNet  MATH  Google Scholar 

  • Bokes, P. (2010). Genetic regulatory networks. PhD thesis, University of Nottingham.

  • Bokes, P., King, J. R., & Loose, M. (2009). A bistable genetic switch which does not require high co-operativity at the promoter: a two-timescale model for the PU. 1–GATA-1 interaction. Math. Med. Biol., 26, 117–132.

    Article  MATH  Google Scholar 

  • Bokes, P., King, J. R., Wood, A. T. A., & Loose, M. (2012). Multiscale stochastic modelling of gene expression. J. Math. Biol.

  • Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E., & Huang, S. (2008). Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature, 453, 544–547.

    Article  Google Scholar 

  • Cherry, J. L., & Adler, F. R. (2000). How to make a biological switch. J. Theor. Biol., 203, 117–133.

    Article  Google Scholar 

  • Chow, C. C., & White, J. A. (1996). Spontaneous action potentials due to channel fluctuations. Biophys. J., 71, 3013–3021.

    Article  Google Scholar 

  • Cinquemani, E., Porreca, R., Ferrari-Trecate, G., & Lygeros, J. (2008). Subtilin production by bacillus subtilis: stochastic hybrid models and parameter identification. IEEE Trans. Autom. Control, 53, 38–50.

    Article  MathSciNet  Google Scholar 

  • Cox, D. R., & Oakes, D. (1984). Analysis of survival data. Boca Raton: Chapman & Hall/CRC.

    Google Scholar 

  • Crudu, A., Debussche, A., & Radulescu, O. (2009). Hybrid stochastic simplifications for multiscale gene networks. BMC Syst. Biol., 3, 89.

    Article  Google Scholar 

  • Davis, M. H. A. (1984). Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. J. R. Stat. Soc. B, 46, 353–388.

    MATH  Google Scholar 

  • De Jong, H. (2002). Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol., 9, 67–103.

    Article  Google Scholar 

  • Friedman, N., Cai, L., & Xie, X. S. (2006). Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys. Rev. Lett., 97, 168302.

    Article  Google Scholar 

  • Gardner, T. S., Cantor, C. R., & Collins, J. J. (2000). Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342.

    Article  Google Scholar 

  • Gillespie, D. T. (1976). A general method for numerically simulating stochastic time evolution of coupled chemical reactions. J. Comput. Phys., 22, 403–434.

    Article  MathSciNet  Google Scholar 

  • Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81, 2340–2361.

    Article  Google Scholar 

  • Griffith, J. S. (1968a). Mathematics of cellular control processes. I. Negative feedback to one gene. J. Theor. Biol., 20, 202–208.

    Article  Google Scholar 

  • Griffith, J. S. (1968b). Mathematics of cellular control processes. II. Positive feedback to one gene. J. Theor. Biol., 20, 209–216.

    Article  Google Scholar 

  • Higham, D. J., Intep, S., Mao, X., & Szpruch, L. (2011). Hybrid simulation of autoregulation within transcription and translation. BIT Numer. Math., 51, 177–196.

    Article  MathSciNet  MATH  Google Scholar 

  • Hu, M., Krause, D., Greaves, M., Sharkis, S., Dexter, M., Heyworth, C., & Enver, T. (1997). Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev., 11, 774–785.

    Article  Google Scholar 

  • Huang, S., Guo, Y. P., May, G., & Enver, T. (2007). Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev. Biol., 305, 695–713.

    Article  Google Scholar 

  • Keener, J. P., & Newby, J. M. (2011). Perturbation analysis of spontaneous action potential initiation by stochastic ion channels. Phys. Rev. E, 84, 011918.

    Article  Google Scholar 

  • Keener, J., & Sneyd, J. (2008). Mathematical physiology: cellular physiology. Berlin: Springer.

    Google Scholar 

  • Kepler, T. B., & Elston, T. C. (2001). Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J., 81, 3116–3136.

    Article  Google Scholar 

  • Laslo, P., Spooner, C. J., Warmflash, A., Lancki, D. W., Lee, H. J., Sciammas, R., Gantner, B. N., Dinner, A. R., & Singh, H. (2006). Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell, 126, 755–766.

    Article  Google Scholar 

  • Lei, J., Mackey, M. C., Yvinec, R., & Zhuge, C. (2012). Adiabatic reduction of a piecewise deterministic Markov model of stochastic gene expression with bursting transcription. arXiv:1202.5411.

  • Lipniacki, T., Paszek, P., Marciniak-Czochra, A., Brasier, A. R., & Kimmel, M. (2006). Transcriptional stochasticity in gene expression. J. Theor. Biol., 238, 348–367.

    Article  MathSciNet  Google Scholar 

  • Loinger, A., Lipshtat, A., Balaban, N. Q., & Biham, O. (2007). Stochastic simulations of genetic switch systems. Phys. Rev. E, 75, 021904.

    Article  Google Scholar 

  • Lu, P., Vogel, C., Wang, R., Yao, X., & Marcotte, E. M. (2007). Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol., 25, 117–124.

    Article  Google Scholar 

  • Mackey, M. C., & Tyran-Kaminska, M. (2008). Dynamics and density evolution in piecewise deterministic growth processes. Ann. Pol. Math., 94, 111–129.

    Article  MathSciNet  MATH  Google Scholar 

  • Mackey, M. C., Tyran-Kaminska, M., & Yvinec, R. (2011). Molecular distributions in gene regulatory dynamics. J. Theor. Biol., 274, 84–96.

    Article  MathSciNet  Google Scholar 

  • Munsky, B., & Khammash, M. (2010). Identification from stochastic cell-to-cell variation: a genetic switch case study. IET Syst. Biol., 4, 356–366.

    Article  Google Scholar 

  • Murray, J. D. (2003). Mathematical biology. Berlin: Springer.

    MATH  Google Scholar 

  • Newby, J. M. (2011). Isolating intrinsic noise sources in a stochastic genetic switch. arXiv:1111.1415.

  • Newby, J., & Bressloff, P. C. (2010). Local synaptic signaling enhances the stochastic transport of motor-driven cargo in neurons. Phys. Biol., 7, 036004.

    Article  Google Scholar 

  • Novák, B., & Tyson, J. J. (2008). Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol., 9(12), 981–991.

    Article  Google Scholar 

  • Othmer, H. G., Dunbar, S. R., & Alt, W. (1988). Models of dispersal in biological systems. J. Math. Biol., 26(3), 263–298.

    Article  MathSciNet  MATH  Google Scholar 

  • Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y., & Tyagi, S. (2006). Stochastic mRNA synthesis in mammalian cells. PLoS Biol., 4, e309.

    Article  Google Scholar 

  • Robert, C. P., & Casella, G. (2004). Monte Carlo statistical methods. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Shea, M. A., & Ackers, G. K. (1985). The OR control system of bacteriophage lambda. A physical-chemical model for gene regulation. J. Mol. Biol., 181, 211–230.

    Article  Google Scholar 

  • Singh, A., & Hespanha, J. P. (2010). Stochastic hybrid systems for studying biochemical processes. Philos. Trans. R. Soc. Lond. A, 368, 4995–5011.

    Article  MathSciNet  MATH  Google Scholar 

  • Swiers, G., Patient, R., & Loose, M. (2006). Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Dev. Biol., 294, 525–540.

    Article  Google Scholar 

  • Taniguchi, Y., Choi, P. J., Li, G. W., Chen, H., Babu, M., Hearn, J., Emili, A., & Xie, X. S. (2010). Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science, 329, 533–538.

    Article  Google Scholar 

  • Tian, T., & Burrage, K. (2006). Stochastic models for regulatory networks of the genetic toggle switch. Proc. Natl. Acad. Sci. USA, 103, 8372–8377.

    Article  Google Scholar 

  • Tyson, J. J., Chen, K. C., & Novak, B. (2003). Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol., 15, 221–231.

    Article  Google Scholar 

  • van Kampen, N. G. (2006). Stochastic processes in physics and chemistry. Amsterdam: Elsevier.

    Google Scholar 

  • Zeiser, S., Franz, U., Wittich, O., & Liebscher, V. (2008). Simulation of genetic networks modelled by piecewise deterministic Markov processes. IET Syst. Biol., 2, 113–135.

    Article  Google Scholar 

  • Zeiser, S., Franz, U., Müller, J., & Liebscher, V. (2009). Hybrid modeling of noise reduction by a negatively autoregulated system. Bull. Math. Biol., 71, 1006–1024.

    Article  MathSciNet  MATH  Google Scholar 

  • Zeiser, S., Franz, U., & Liebscher, V. (2010). Autocatalytic genetic networks modeled by piecewise-deterministic Markov processes. J. Math. Biol., 60, 207–246.

    Article  MathSciNet  Google Scholar 

  • Zenklusen, D., Larson, D. R., & Singer, R. H. (2008). Single-rna counting reveals alternative modes of gene expression in yeast. Nat. Struct. Mol. Biol., 15, 1263–1271.

    Article  Google Scholar 

Download references

Acknowledgements

P. Bokes was supported by the European Commission under Marie Curie Early Stage Researcher Training (contract no. MEST-CT-2005-020723) and also by the Slovak Research and Development Agency (contract no. APVV-0134-10). J. King gratefully acknowledges the funding of the BBSRC/EPSRC (reference no. BB/D008522/1) and of the Royal Society and Wolfson Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavol Bokes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokes, P., King, J.R., Wood, A.T.A. et al. Transcriptional Bursting Diversifies the Behaviour of a Toggle Switch: Hybrid Simulation of Stochastic Gene Expression. Bull Math Biol 75, 351–371 (2013). https://doi.org/10.1007/s11538-013-9811-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9811-z

Keywords

Navigation