Skip to main content
Log in

Meniscal Tear Film Fluid Dynamics Near Marx’s Line

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Extensive studies have explored the dynamics of the ocular surface fluid, though theoretical investigations are typically limited to the use of the lubrication approximation, which is not guaranteed to be uniformly valid a-priori throughout the tear meniscus. However, resolving tear film behaviour within the meniscus and especially its apices is required to characterise the flow dynamics where the tear film is especially thin, and thus most susceptible to evaporatively induced hyperosmolarity and subsequent epithelial damage. Hence, we have explored the accuracy of the standard lubrication approximation for the tear film by explicit comparisons with the 2D Navier–Stokes model, considering both stationary and moving eyelids. Our results demonstrate that the lubrication model is qualitatively accurate except in the vicinity of the eyelids. In particular, and in contrast to lubrication theory, the solution of the full Navier–Stokes equations predict a distinct absence of fluid flow, and thus convective mixing in the region adjacent to the tear film contact line. These observations not only support emergent hypotheses concerning the formation of Marx’s line, a region of epithelial cell staining adjacent to the contact line on the eyelid, but also enhance our understanding of the pathophysiological consequences of the flow profile near the tear film contact line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. We note at this stage that the value of x f may be different in the lubrication approximation and the full model.

  2. h m and R are dimensional in this expression.

References

  • Aydemir, E., Breward, C. J. W., & Witelski, T. P. (2011). The effect of polar lipids on tear film dynamics. Bull Math Bio, 73(6), 1171–1201.

    Article  MathSciNet  MATH  Google Scholar 

  • Baudouin, C. (2007). The vicious circle in dry eye syndrome: a mechanistic approach. J. Fr. Ophthalmol., 30, 239–246.

    Article  Google Scholar 

  • Benilov, E., & Zubkov, V. (2008). On the drag-out problem in liquid film theory. J. Fluid Mech., 617, 283–299.

    Article  MathSciNet  MATH  Google Scholar 

  • Berger, R. E., & Corrsin, S. (1974). A surface tension gradient mechanism for driving the pre-corneal tear film after a blink. J. Biomech., 7, 225–238.

    Article  Google Scholar 

  • Braun, R. J. (2012). Dynamics of the tear film. Annu. Rev. Fluid Mech., 44, 267–297.

    Article  Google Scholar 

  • Breward, C. J. W., Bruna, M., Gaffney, E. A., & Zubkov, V. S. (2012, in preparation). The influence of nonpolar lipids on tear film dynamics.

  • Bron, A., Tiffany, J., Gouveia, S., Yokoi, N., & Voon, L. (2004). Functional aspects of the tear film lipid layer. Exp. Eye Res., 78, 347–360.

    Article  Google Scholar 

  • Bron, A. J., Yokoi, N., Gaffney, E. A., & Tiffany, J. M. (2011a). A solute gradient in the tear meniscus I. An hypothesis to explain Marx’s line. Ocul. Surf., 7, 92–97.

    Article  Google Scholar 

  • Bron, A. J., Yokoi, N., Gaffney, E. A., & Tiffany, J. M. (2011b). A solute gradient in the tear meniscus II. Implications for lid margin disease, including Meibomian gland dysfunction. Ocul. Surf., 9, 70–91.

    Article  Google Scholar 

  • DEWS (2007). The epidemiology of dry eye disease: report of the epidemiology subcommittee of the international dry eye workshop. Ocul. Surf., 5, 93–107.

    Article  Google Scholar 

  • Gaffney, E. A., Tiffany, J. M., Yokoi, N., & Bron, A. J. (2010). A mass and solute balance model for tear volume and osmolarity in the normal and the dry eye. Prog. Retin. Eye Res., 29, 59–78.

    Article  Google Scholar 

  • Gilbard, J. P., Carter, J. B., Sang, D. N., Refojo, M. F., Hanninen, L. A., & Kenyon, K. R. (1984). Morphologic effect of hyperosmolarity on rabbit corneal epithelium. Ophthalmology, 91, 1205–1212.

    Article  Google Scholar 

  • Gilbard, J. P., Rossi, S. R., & Heyda, K. G. (1989). Tear film and ocular surface changes after closure of the meibomian gland orifices in the rabbit. Ophthalmology, 96, 1180–1186.

    Article  Google Scholar 

  • Harwood, M. R., Mezey, L. E., & Harris, C. M. (1999). The spectral main sequence of human saccades. J. Neurosci., 19, 9098–9106.

    Google Scholar 

  • Huang, A. J. W., Belldegrun, R., Hanninen, L., Kenyon, K. R., Tseng, S. C. G., & Refojo, M. F. (1989). Effect of hypertonic solutions on conjunctival epithelium and mucin like glycoprotein discharge. Cornea, 8, 15–20.

    Article  Google Scholar 

  • Johnson, M. E., & Murphy, P. J. (2005). The agreement and repeatability of tear meniscus height measurement methods. Optom. Vis. Sci., 82, 1030–1037.

    Article  Google Scholar 

  • Jones, M. B., Please, C. P., McElwain, D. L. S., Fulford, G. R., & Robert, A. P. (2005). Dynamics of tear film deposition and draining. Math. Med. Biol., 22, 265–288.

    Article  MATH  Google Scholar 

  • Jones, M. B., Please, C. P., McElwain, D. L. S., Fulford, G. R., & Robert, A. P. (2006). The effect of the lipid layer on tear film behaviour. Bull. Math. Biol., 86, 1355–1381.

    Article  Google Scholar 

  • King-Smith, P. E., Fink, B. A., Hill, R. M., Koelling, K. W., & Tiffany, J. M. (2004). The thickness of the tear film. Curr. Eye Res., 29, 357–368.

    Article  Google Scholar 

  • King-Smith, P. E., Nichols, J. J., Nichols, K. K., Fink, B. A., & Braun, R. J. (2008). Contributions of evaporation and other mechanisms to tear film thinning and break-up. Optom. Vis. Sci., 85, 623–630.

    Article  Google Scholar 

  • Knop, E., Knop, N., Zhivov, A., Kraak, R., Korb, D., Blackie, C., Greiner, J., & Guthoff, R. (2011). The lid wiper and muco-cutaneous junction anatomy of the human eyelid margins: an in vivo confocal and histological study. J. Anat., 218, 449–461.

    Google Scholar 

  • Maki, K. L., Braun, R. J., Henshaw, W. D., & King-Smith, P. E. (2010a). Tear film dynamics on an eye-shaped domain i: pressure boundary conditions. Math. Med. Biol., 27, 227–254.

    Article  MathSciNet  MATH  Google Scholar 

  • Maki, K. L., Braun, R. J., Henshaw, W. D., & King-Smith, P. E. (2010b). Tear film dynamics on an eye-shaped domain part 2. flux boundary conditions. J. Fluid Mech., 647, 361–390.

    Article  MathSciNet  MATH  Google Scholar 

  • Miller, K. L., Polse, K. A., & Radke, C. J. (2002). Black-line formation and the “perched” human tear film. Curr. Eye Res., 25, 155–162.

    Article  Google Scholar 

  • Moffatt, H. K. (1963). Viscous and resistive eddies near a sharp corner. J. Fluid Mech., 18(1), 1–18.

    Article  Google Scholar 

  • Owens, H., & Phillips, J. R. (2001). Spreading of the tears after a blink - velocity and stabilization time in healthy eyes. Cornea, 20(5), 484–487.

    Article  Google Scholar 

  • Sharma, A., Tiwari, S., Khanna, R., & Tiffany, J. M. (1998). Hydrodynamics of meniscus induced thinning of the tear fluid. In D. Sullivan, D. Dartt, & M. Meneray (Eds.), Lacrimal gland, tear film, and dry eye syndromes (p. 2). New York: Plenum.

    Google Scholar 

  • Tiffany, J. M., Winter, N., & Bliss, G. (1989). Tear film stability and tear surface tension. Curr. Eye Res., 8, 507–515.

    Article  Google Scholar 

  • Tsubota, K., Hata, S., Okusawa, Y., Egami, F., Ohtsuk, T., & Nakamori, K. (1996). Quantitative videographic analysis of blinking in normal subjects and patients with dry eye. Arch. Ophthalmol., 114, 715–720.

    Article  Google Scholar 

  • Wilson, S. D. R. (1982). The drag-out problem in film coating theory. J. Eng. Math., 16, 209–221.

    Article  MATH  Google Scholar 

  • Winter, K. N., Anderson, D. M., & Braun, R. J. (2010). A model for wetting and evaporation of a post-blink precorneal tear film. Math. Med. Biol., 27, 211–225.

    Article  MathSciNet  MATH  Google Scholar 

  • Wong, H., Fatt, I., & Radke, C. J. (1996). Deposition and thinning of the human tear film. J. Colloid Interface Sci., 184, 44–51.

    Article  Google Scholar 

  • Yarbus, A. L. (1967). Eye movements and vision. New York: Plenum.

    Book  Google Scholar 

  • Yokoi, N., Bron, A. J., Tiffany, J. M., Brown, N., Hsuan, J., & Fowler, C. (1999). Reflective meniscometry: A. non-invasive method to measure tear meniscus curvature. Br. J. Ophthalmol., 83, 92–97.

    Article  Google Scholar 

  • Yokoi, N., Yameda, H., Mizukusa, Y., Bron, A. J., Tiffany, J. M., Kato, T., & Kinoshita, S. (2008). Rheology of tear film lipid layer spread in normal and aqueous tear-deficient dry eyes. Investig. Ophthalmol. Vis. Sci., 49, 5319–5324.

    Article  Google Scholar 

  • Zubkov, V. S., Breward, C. J. W., & Gaffney, E. A. (2012). Coupling fluid and solute dynamics within the ocular surface tear film: a modelling study of black line osmolarity. Bull. Math. Biol. 74(9), 2062–2093. doi:10.1007/s11538-012-9746-9.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper is based on work supported by Award No. KUK-C1-013-04 made by King Abdullah University of Science and Technology (KAUST). We are grateful to Professor Richard Braun, Professor Anthony Bron, Professor Colin Please, and Dr. John Tiffany for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Zubkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zubkov, V.S., Breward, C.J.W. & Gaffney, E.A. Meniscal Tear Film Fluid Dynamics Near Marx’s Line. Bull Math Biol 75, 1524–1543 (2013). https://doi.org/10.1007/s11538-013-9858-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9858-x

Keywords

Navigation