Skip to main content
Log in

Regulation of Electrical Bursting in a Spatiotemporal Model of a GnRH Neuron

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Gonadotropin-releasing hormone (GnRH) neurons are hypothalamic neurons that control the pulsatile release of GnRH that governs fertility and reproduction in mammals. The mechanisms underlying the pulsatile release of GnRH are not well understood. Some mathematical models have been developed previously to explain different aspects of these activities, such as the properties of burst action potential firing and their associated Ca2+ transients. These previous studies were based on experimental recordings taken from the soma of GnRH neurons. However, some research groups have shown that the dendrites of GnRH neurons play very important roles. In particular, it is now known that the site of action potential initiation in these neurons is often in the dendrite, over 100 μm from the soma. This raises an important question. Since some of the mechanisms for controlling the burst length and interburst interval are located in the soma, how can electrical bursting be controlled when initiated at a site located some distance from these controlling mechanisms? In order to answer this question, we construct a spatio-temporal mathematical model that includes both the soma and the dendrite. Our model shows that the diffusion coefficient for the spread of electrical potentials in the dendrite is large enough to coordinate burst firing of action potentials when the initiation site is located at some distance from the soma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alle, H., & Geiger, J. R. P. (2006). Combined analog and action potential coding in hippocampal mossy fibers. Science, 311, 1290–1293.

    Article  Google Scholar 

  • Andersen, P., Soleng, A. F., & Raastad, M. (2000). The hippocampal lamella hypothesis revisited. Brain Res., 886, 165–171.

    Article  Google Scholar 

  • Antic, S. D. (2003). Action potentials in basal and oblique dendrites of rat neocortical pyramidal neurons. J. Physiol., 550(1), 35–50.

    Article  Google Scholar 

  • Campbell, R. E., & Suter, K. J. (2010). Redefining the gonadotrophin-releasing hormone neurone dendrite. J. Neuroendocrinol., 22, 650–658.

    Google Scholar 

  • Campbell, R. E., Han, S. K., & Herbison, A. E. (2005). Biocytin filling of adult gonadotropin releasing hormone neurons in situ reveals extensive, spiny, dendritic processes. Endocrinology, 146, 1163–1169.

    Article  Google Scholar 

  • Campbell, R. E., Gaidamaka, G., Han, S. K., & Herbison, A. E. (2009). Dendro-dendritic bundling and shared synapses between gonadotropin-releasing hormone neurons. Proc. Natl. Acad. Sci. USA, 106, 10835–10840.

    Article  Google Scholar 

  • Casale, A. E., & McCormick, D. A. (2011). Active action potential propagation but not initiation in thalamic interneuron dendrites. J. Neurosci., 31(50), 18289–18302.

    Article  Google Scholar 

  • Christian, C. A., & Moenter, S. M. (2008). Vasoactive intestinal polypeptide can excite gonadotropin-releasing hormone neurons in a manner dependent on estradiol and gated by time of day. Endocrinology, 149(6), 3130–3136.

    Article  Google Scholar 

  • Chu, Z., & Moenter, S. M. (2006). Physiologic regulation of a tetrodotoxin-sensitive sodium influx that mediates a slow afterdepolarization potential in gonadotropin-releasing hormone neurons: possible implications for the central regulation of fertility. J. Neurosci., 26(46), 11961–11973.

    Article  Google Scholar 

  • Chu, Z., Takagi, H., & Moenter, S. M. (2010). Hyperpolarization-activated currents in gonadotropin-releasing hormone (GnRH) neurons contribute to intrinsic excitability and are regulated by gonadal steroid feedback. J. Neurosci., 30(40), 13373–13383.

    Article  Google Scholar 

  • Constantin, J., & Charles, A. (1999). Spontaneous action potentials initiate rhythmic intercellular calcium waves in immortalized hypothalamic (GT1–1) neurons. J. Neurophysiol., 82, 429–435.

    Google Scholar 

  • Cserscik, D., Farkas, I., Hrabovszky, E., & Liposits, Z. (2012). A simple integrative electrophysiological model of bursting GnRH neurons. J. Comput. Neurosci., 32, 119–136.

    Article  MathSciNet  Google Scholar 

  • Debanne, D., Campanac, E., Bialowas, A., Carlier, E., & Alcaraz, G. (2011). Axon physiology. Physiol. Rev., 91, 555–602.

    Article  Google Scholar 

  • Djurisic, M., Antic, S., Chen, W. R., & Zecevic, D. (2004). Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones. J. Neurosci., 24(30), 6703–6714.

    Article  Google Scholar 

  • Duan, W., Lee, K., Herbison, A. E., & Sneyd, J. (2011). A mathematical model of adult GnRH neurons in mouse brain and its bifurcation analysis. J. Theor. Biol., 276, 22–34.

    Article  MathSciNet  Google Scholar 

  • Fletcher, P., & Li, Y. (2009). An integrated model of electrical spiking, bursting, and calcium oscillations in GnRH neurons. Biophys. J., 96, 4514–4524.

    Article  Google Scholar 

  • Foust, A., Popovic, M., Zecevic, D., & McCormick, D. A. (2010). Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons. J. Neurosci., 30(20), 6891–6902.

    Article  Google Scholar 

  • Gerhold, L. M., & Wise, P. M. (2006). Vasoactive intestinal polypeptide regulates dynamic changes in astrocyte morphometry: impact on gonadotropin-releasing hormone neurons. Endocrinology, 147(5), 2197–2202.

    Article  Google Scholar 

  • Gerhold, L. M., Rosewell, K. L., & Wise, P. M. (2005). Suppression of vasoactive intestinal polypeptide in the suprachiasmatic nucleus leads to aging-like alterations in cAMP rhythms and activation of gonadotropin-releasing hormone neurons. J. Neurosci., 25(1), 62–67.

    Article  Google Scholar 

  • Gin, E., Falcke, M., Wagner, L. E. II., Yule, D. I., & Sneyd, J. (2009). A kinetic model of the inositol trisphosphate receptor based on single-channel data. Biophys. J., 96, 4053–4062.

    Article  Google Scholar 

  • Herbison, A. E. (2006). Physiology of the GnRH neuronal network. In J. D. Neill (Ed.), Knobil and Neill’s physiology of reproduction (3rd ed.) (pp. 1415–1482). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Herbison, A. E., & Moenter, S. M. (2011). Depolarising and hyperpolarising actions of \(\rm{GABA_{A}}\) receptor activation on gonadotrophin-releasing hormone neurones: towards and emerging consensus. J. Neuroendocrinol., 23, 557–569.

    Article  Google Scholar 

  • Herbison, A. E., Pape, J. R., Skynner, S. X., & Sim, J. A. (2001). Molecular and cellular properties of GnRH neurons revealed through transgenics in the mouse. Mol. Cell. Endocrinol., 185, 185–194.

    Article  Google Scholar 

  • Iremonger, K. J., & Herbison, A. E. (2012). Initiation and propagation of action potentials in GnRH neuron dendrites. J. Neurosci., 32(1), 151–158.

    Article  Google Scholar 

  • Jasoni, C. L., Todman, M. G., Strumia, M. M., & Herbison, A. E. (2007). Cell type-specific expression of a genetically encoded calcium indicator reveals intrinsic calcium oscillations in adult gonadotropin-releasing hormone neurons. J. Neurosci., 27, 860–867.

    Article  Google Scholar 

  • Keener, J., & Sneyd, J. (2008). Mathematical physiology (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  • Kole, M. H. P., Letzkus, J. J., & Stuart, G. (2007). Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron, 55, 633–647.

    Article  Google Scholar 

  • Kole, M. H. P., Ilschner, S. U., Kampa, B. M., Williams, S. R., Ruben, P. C., & Stuart, G. J. (2008). Action potential generation requires a high sodium channel density in the axon initial segment. Nat. Neurosci., 11, 178–186.

    Article  Google Scholar 

  • Kress, G. J., Dowling, M., Meeks, J. P., & Mennerick, S. (2008). High threshold, proximal initiation, and slow conduction velocity of action potentials in dentate granule neuron mossy fibers. J. Neurophysiol., 100, 281–291.

    Article  Google Scholar 

  • Krueppel, R., Remy, S., & Beck, H. (2011). Dendritic integration in hippocampal dentate granule cells. Neuron, 71, 512–528.

    Article  Google Scholar 

  • LeBeau, A., Goor, F. V., Stojilkovic, S., & Sherman, A. (2000). Modeling of membrane excitability in gonadotropin releasing hormone secreting hypothalamic neurons regulated by Ca 2+ mobilizing and adenylyl cyclase-coupled receptors. J. Neurosci., 20, 9290–9297.

    Google Scholar 

  • Lee, K., Duan, W., Sneyd, J., & Herbison, A. E. (2010). The slow calcium-activated afterhyperpolarization currents control burst firing dynamics in gonadotropin-releasing hormone neurons. J. Neurosci., 20(18), 6214–6224.

    Article  Google Scholar 

  • Lee, K., Liu, X., & Herbison, A. E. (2012). Burst firing in gonadotropin-releasing hormone neurons does not require ionotropic GABA or glutamate receptor activation. J. Neuroendocrinol.. doi:10.1111/j.1365-2826.2012.02360.x.

    Google Scholar 

  • Liu, X., Porteous, R., d’Anglemont de Tassigny, X., Colledge, W. H., Millar, R., Petersen, S. L., & Herbison, A. E. (2011). Frequency-dependent recruitment of fast amino acid and slow neuropeptide neurotransmitter release controls gonadotropin-releasing hormone neuron excitability. J. Neurosci., 31(7), 2421–2430.

    Article  Google Scholar 

  • Martinez, d. l. E. G., Choi, A. L., & Weiner, R. I. (1992). Generation and synchronization of gonadotropin-releasing hormone (GnRH) pulses: intrinsic properties of the GT1-1 GnRH neuronal cell line. Proc. Natl. Acad. Sci. USA, 89, 1852–1855.

    Article  Google Scholar 

  • Meeks, J. P., & Mennerick, S. (2007). Action potential initiation and propagation in CA3 pyramidal axons. J. Neurophysiol., 97, 3460–3472.

    Article  Google Scholar 

  • Mellon, P. L., Windle, J. J., Goldsmith, P. C., Padula, C. A., Roberts, J. L., & Weiner, R. I. (1990). Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron, 5, 1–10.

    Article  Google Scholar 

  • Moenter, S. M., DeFazio, A. R., Pitts, G. R., & Nunemaker, C. S. (2003). Mechanisms underlying episodic gonadotropin-releasing hormone secretion. Front. Neuroendocrinol., 24, 79–93.

    Article  Google Scholar 

  • Nagai, T., Sawano, A., Park, E. S., & Miyawaki, A. (2001). Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc. Natl. Acad. Sci. USA, 98, 3197–3202.

    Article  Google Scholar 

  • Nevian, T., Larkum, M. E., Polsky, A., & Schiller, J. (2007). Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat. Neurosci., 10(2), 206–214.

    Article  Google Scholar 

  • Palmer, L. M., Clark, B. A., Gründemann, J., Roth, A., Stuart, G. J., & Häusser, M. (2010). Initiation of simple and complex spikes in cerebellar Purkinje cells. J. Physiol., 588(10), 1709–1717.

    Article  Google Scholar 

  • Roberts, C. B., Best, J. A., & Suter, K. J. (2006). Dendritic processing of excitatory synaptic input in hypothalamic gonadotropin releasing-hormone (GnRH) neurons. Endocrinology, 147, 1545–1555.

    Article  Google Scholar 

  • Roberts, C. B., Campbell, R. E., Herbison, A. E., & Suter, K. J. (2008). Dendritic action potential initiation in hypothalamic gonadotropin-releasing hormone neurons. Endocrinology, 149, 3355–3360.

    Article  Google Scholar 

  • Roberts, C., O’Boyle, M., & Suter, K. (2009). Dendrites determine the contribution of after depolarization potentials (ADPs) to generation of repetitive action potentials in hypothalamic gonadotropin releasing-hormone (GnRH) neurons. J. Comput. Neurosci., 26, 39–53.

    Article  Google Scholar 

  • Sasaki, T., Matsuki, N., & Ikegaya, Y. (2011). Action-potential modulation during axonal conduction. Science, 331, 599.

    Article  Google Scholar 

  • Schmidt-Hieber, C., Jonas, P., & Bischofberger, J. (2008). Action potential initiation and propagation in hippocampal mossy fibre axons. J. Physiol., 586(7), 1849–1857.

    Article  Google Scholar 

  • Shu, Y., Hasenstaub, A., Duque, A., Yu, Y., & McCormick, D. A. (2006). Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature, 441, 761–765.

    Article  Google Scholar 

  • Shu, Y., Duque, A., Yu, Y., Haider, B., & McCormick, D. D. (2007). Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. J. Neurophysiol., 97, 746–760.

    Article  Google Scholar 

  • Spergel, D., Kruth, U., Hanley, D., Sprengel, R., & Seeburg, P. (1999). GABA- and glutamate-activated channels in green fluorescent protein-tagged gonadotropin-releasing hormone neurons in transgenic mice. J. Neurophysiol., 19, 2037–2050.

    Google Scholar 

  • Suter, K. J., Wuarin, J. P., Smith, B. N., Dudek, F. E., & Moenter, S. M. (2000). Whole-cell recordings from hypothalamic slices reveal burst firing in gonadotropin-releasing hormone (GnRH) neurons identified with green fluorescent protein (GFP) in transgenic mice. Endocrinology, 141, 3731–3736.

    Google Scholar 

  • van Goor, F., Krsmanovic, L., Catt, K., & Stojilkovic, S. (1999a). Coordinate regulation of gonadotropin-releasing hormone neuronal firing patterns by cytosolic calcium and store depletion. Proc. Natl. Acad. Sci. USA, 96, 4101–4106.

    Article  Google Scholar 

  • van Goor, F., Krsmanovic, L., Catt, K., & Stojilkovic, S. (1999b). Control of action potential-driven calcium influx in GT1 neurons by the activation status of sodium and calcium channels. Mol. Endocrinol., 13, 587–603.

    Article  Google Scholar 

  • van Goor, F., LeBeau, A., Krsmanovic, L., Sherman, A., Catt, K., & Stojilkovic, S. (2000). Amplitude-dependent spike broadening and enhanced Ca2+ signaling in GnRH-secreting neurons. Biophys. J., 79, 1310–1323.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the New Zealand Health Research Council, and by a University of Auckland Doctoral Scholarship to Xingjiang Chen. The author(s) wish to acknowledge the contribution of the NeSI high-performance computing facilities and the staff at the Centre for eResearch at the University of Auckland. New Zealand’s national facilities are provided by the New Zealand eScience Infrastructure (NeSI) and funded jointly by NeSI’s collaborator institutions and through the Ministry of Business, Innovation, and Employment’s Infrastructure programme. URL http://www.nesi.org.nz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingjiang Chen.

Appendices

Appendix A: Voltage Submodel

The equation for membrane potential (V) in the voltage subsystem is

$$\frac{\partial V(x,t)}{\partial t} = -\frac{1}{C_m}I_{\mathrm {ionic}} (V,x,t)+ D_v \frac{\partial^2 V(x,t)}{\partial x^2}, $$

where C m is the membrane capacitance and I ionic is the sum of the ionic currents.

For x∈[0,x 1], the currents in the soma are modeled as

$$\begin{aligned} I_{\mathrm{ionic}} (V,x,t) =& I_{naf}+I_{nap}+I_{kdr}+I_{kir}+I_{km}+I_{cal} +I_{cat}\\ &{}+sI_{\mathit{AHP}_{\mathit{SK}}}+sI_{\mathit{AHP}_{\mathit{UCL}}}+I_{App}. \end{aligned}$$

For x∈[x 2,x 3], the currents in the iSite are the same as in the soma, except that we use a higher conductance for I naf , representing a higher density of Na+ channels in the iSite. We use a Na+ conductance (g naf ) of 410 nS in the iSite, and 150 nS elsewhere (Table 1).

Table 1 Parameter values of the model. These parameters are either new to this model, or have values taken from Lee et al. (2010), and Duan et al. (2011) (with very minor changes)

For x∈[x 1,x 2] and x∈[x 3,x 4], the currents in the dendrite are modeled as

$$I_{\mathrm{ionic}} (V,x,t) = I_{naf}+I_{nap}+I_{kdr}+I_{kir}+I_{km}+I_{cal}+I_{cat}+I_{App}. $$

I naf and I nap denote the fast, persistent Na+ currents, I kdr , I kir , and I km denote the delayed rectifier, inward rectifier, and m-type K+ currents respectively, I cal and I cat are L-type and T-type Ca2+ currents, \(sI_{\mathit{AHP}_{\mathit{SK}}}\) is an SK-type Ca2+-activated K+ current, and \(sI_{\mathit{AHP}_{\mathit{UCL}}}\) is a slow Ca2+-activated after hyperpolarization current. I App is a passive membrane leakage current. It may incorporate current from synaptic inputs, although there are no explicit synaptic inputs in our model. All the ion channels and fluxes are modeled as in Lee et al. (2010), Duan et al. (2011) and references therein.

We used a Hodgkin–Huxley formalism to model the currents. For example, I naf is described as

$$I_{naf} = g_{naf}M^3_{naf_\infty}H_{naf} (V - V_{na} ), $$

where g naf is the maximum conductance, M naf is the activation gating variable, H naf is the inactivation gating variable, and V na is the reversal potential for Na+. Similarly, equations governing the other voltage-dependent currents are described by

$$\begin{aligned} I_{nap} =& g_{nap}M_{nap_\infty}H_{nap_\infty} (V - V_{na} ), \\ I_{kdr} =& g_{kdr}N^4_{kdr} (V - V_k ), \\ I_{kir} =& g_{kir}N_{kir_\infty} (V - V_k ), \\ I_{km} =& g_{km}N_{km} (V - V_k ), \\ I_{cal} =& g_{cal}M^2_{cal_\infty} (V - V_{ca} ), \\ I_{cat} =& g_{cat}M^2_{cat_\infty}H_{cat_\infty} (V - V_{ca} ). \end{aligned}$$

The gating variables M naf ,M nap ,N kir ,M cal ,M cat , and H cat are set to their steady-state values, while the gating variables H naf ,N kdr , and N km are modeled by

$$\frac{dG}{dt} = \frac{G_\infty- G}{\tau_G}. $$

The steady-state functions H naf ,N kdr , and N km can be found in Lee et al. (2010) and Duan et al. (2011).

The equation for \(sI_{\mathit{AHP}_{\mathit{SK}}}\) is

$$sI_{\mathit{AHP}_{\mathit{SK}}}= g_{sk}\frac{c^{n_{sk}}}{c^{n_{sk}}+K^{n_{sk}}_{sk}} (V-V_k ). $$

The equation for \(sI_{\mathit{AHP}_{\mathit{UCL}}}\) is

$$sI_{\mathit{AHP}_{\mathit{UCL}}} = g_{ucl} \bigl(O_{ucl}+O^*_{ucl} \bigr) (V-V_k ), $$

where O ucl and \(O^{*}_{ucl}\) are two open states of the channel governed by the kinetic equations of the system introduced in Lee et al. (2010).

Appendix B: Calcium Submodel

The equations describing the calcium concentration in the cytosol (c) and in the endoplasmic reticulum (ER)(c e ) are as follows:

$$\begin{aligned} \frac{\partial c(x,t)}{\partial t} =& \rho(J_{in}-J_{pm} )+ J_{\mathrm{release}}-J_{\mathrm{serca}}+D_c\frac{\partial^2 c(x,t)}{\partial x^2}, \\ \frac{dc_e(x,t)}{dt} =&\gamma(J_{\mathrm{serca}}-J_{\mathrm {release}} ), \end{aligned}$$

where ρ is used to scale plasma membrane and ER fluxes, and γ is the volume ratio between the ER and the cytosol. J in , J pm , J release, and J serca denote the influx via plasma membrane channels, efflux via the Ca-ATPase and Na-Ca exchanger (NCX) plasma membrane pumps, release of Ca2+ from the ER to cytosol, and Ca2+ pumping from the cytosol to the ER, respectively. We have

$$\begin{aligned} J_{in} =&-\alpha(I_{cal}+I_{cat} )+\beta IP_3, \\ J_{pm} =&V_p\frac{c^2}{c^2+K^2_p}+V_{\mathrm{NaCa}} \frac{c^4}{c^4+K^4_{\mathrm{NaCa}}}, \\ J_{\mathrm{release}} =& (K_fP_o+J_{er} ) (c_e-c ), \\ J_{\mathrm{serca}} =&P_{\mathrm{rate}}\frac {c-a_1c_e}{a_2+a_3c+a_4c_e+a_5cc_e}. \end{aligned}$$

The IPR open probability (P o ) is from Gin et al. (2009):

$$P_o = \frac {q_{12}q_{32}q_{24}}{q_{12}q_{32}q_{24}+q_{42}q_{23}q_{12}+q_{42}q_{32}q_{12}+q_{42}q_{32}q_{21}}, $$

where q 12,q 21,q 24, and q 42 are set to their steady-state values, and where q 23 and q 32 are given by

$$\begin{aligned} q_{23}(c) =&a_{23}- \biggl(\frac{V_{23}}{k^2_{23}+c^2}+b_{23} \biggr) \biggl(\frac{V_{-23}c^5}{k^5_{-23}+c^5}+b_{-23} \biggr), \\ q_{32}(c) =& \biggl(\frac{V_{32}}{k^3_{32}+c^3}+b_{32} \biggr) \biggl(\frac{V_{-32}c^7}{k^7_{-32}+c^7}+b_{-32} \biggr). \end{aligned}$$

Since Ca2+ diffusion is orders of magnitude slower than the diffusion of V (Keener and Sneyd 2008), Ca2+ diffusion was omitted from all our model simulations.

Appendix C: Numerical Method

We used a finite difference method to solve the model equations in MATLAB (MathWorks). We discretized the spatial derivative using the second-order implicit central difference method, and the time derivative using the first order explicit Euler method. For some long time simulations, we also used the method of lines, using the routine ode15s.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Iremonger, K., Herbison, A. et al. Regulation of Electrical Bursting in a Spatiotemporal Model of a GnRH Neuron. Bull Math Biol 75, 1941–1960 (2013). https://doi.org/10.1007/s11538-013-9877-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9877-7

Keywords

Navigation