Skip to main content
Log in

Caspase-1-Mediated Pyroptosis of the Predominance for Driving CD4\(^{+}\) T Cells Death: A Nonlocal Spatial Mathematical Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Caspase-1-mediated pyroptosis is the predominance for driving CD4\(^{+}\) T cells death. Dying infected CD4\(^{+}\) T cells can release inflammatory signals which attract more uninfected CD4\(^{+}\) T cells to die. This paper is devoted to developing a diffusive mathematical model which can make useful contributions to understanding caspase-1-mediated pyroptosis by inflammatory cytokines IL-1\(\beta \) released from infected cells in the within-host environment. The well-posedness of solutions, basic reproduction number, threshold dynamics are investigated for spatially heterogeneous infection. Travelling wave solutions for spatially homogeneous infection are studied. Numerical computations reveal that the spatially heterogeneous infection can make \(\mathscr {R}_0>1\), that is, it can induce the persistence of virus compared to the spatially homogeneous infection. We also find that the random movements of virus have no effect on basic reproduction number for the spatially homogeneous model, while it may result in less infection risk for the spatially heterogeneous model, under some suitable parameters. Further, the death of infected CD4\(^{+}\) cells which are caused by pyroptosis can make \(\mathscr {R}_0<1\), that is, it can induce the extinction of virus, regardless of whether or not the parameters are spatially dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen LJS, Bolker BM, Lou Y, Nevai AL (2008) Asymptotic profiles of the steady state for an SIS epidemic reaction–diffusion model. Discrete Contin Dyn Syst Ser B 21:1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Chatelin F (1981) The spectral approximation of linear operators with application to the computation of eigenelements of differential and integral operators. SIAM Rev 23:495–522

    Article  MathSciNet  MATH  Google Scholar 

  • Cummins NW, Badley AD (2010) Mechanisms of HIV-associated lymphocyte apoptosis. Cell Death Dis 1:1–9

    Article  Google Scholar 

  • Cox AL, Siliciano RF (2014) HIV: not-so-innocent bystanders. Nature 505:492–493

    Article  Google Scholar 

  • de Boer RJ, Perelson AS (2013) Quantifying T lymphocyte turnover. J Theoret Biol 327:45–87

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio \(R_0\) in the models for infectious disease in heterogeneous populations. J Math Biol 28:365–382

    Article  MathSciNet  MATH  Google Scholar 

  • Doitsh G et al (2010) Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell 143:789–801

    Article  Google Scholar 

  • Doitsh G et al (2014) Pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505:509–514

    Article  Google Scholar 

  • Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907–1916

    Article  Google Scholar 

  • Friedman A (1964) Partial differential equations of parabolic type. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Gourley SA, Britton NF (1996) A predator–prey reaction–diffusion system with nonlocal effects. J Math Biol 34:297–333

    Article  MathSciNet  MATH  Google Scholar 

  • Gourley SA, Wu JH (2006) Delayed non-local diffusive systems in biological invasion and disease spread. Nonlinear dynamics and evolution equations, vol 48. American Mathematical Society, Providence, pp 137–200

    Google Scholar 

  • Gourley SA, So JWH, Wu J (2004) Nonlocality of reaction–diffusion equations induced by delay: biological modeling and nonlinear dynamics. J Math Sci 124:5119–5153

    Article  MathSciNet  MATH  Google Scholar 

  • Guo Z, Wang F, Zou X (2012) Threshold dynamics of an infective disease model with a fixed latent period and non-local infections. J Math Biol 65:1387–1410

    Article  MathSciNet  MATH  Google Scholar 

  • Hale JK (1988) Asymptotic behavior of dissipative systems. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Haberman R (1998) Elementary applied partial differential equations: with Fourier series and boundary value problems. Prentice Hall, New Jersey

    MATH  Google Scholar 

  • Hillen T, Painter KJ (2009) A users guide to PDE models for chemotaxis. J Math Biol 58:183–271

    Article  MathSciNet  MATH  Google Scholar 

  • Heffernan JM, Smith RJ, Wahl LM (2005) Perspectives on the basic reproductive ratio. J R Soc Interface 2:281–293

    Article  Google Scholar 

  • Ikebe Y (1972) The Galerkin method for the numerical solution of Fredholm integral equations of the 2nd kind. SIAM Rev 14:465–491

    Article  MathSciNet  MATH  Google Scholar 

  • Lai X, Zou X (2014) Repulsion effect on superinfecting virions by infected cells. Bull Math Biol 76:2806–2833

    Article  MathSciNet  MATH  Google Scholar 

  • Li B, Weinberger H, Lewis M (2005) Spreading speeds as slowest wave speeds for cooperative systems. Math Biosci 196:82–98

    Article  MathSciNet  MATH  Google Scholar 

  • Li W, Lin G, Ruan S (2006) Existence of traveling wave solutions in delayed reaction–diffusion models with applications to diffusion-competition models. Nonlinearity 19:1253–1273

    Article  MathSciNet  MATH  Google Scholar 

  • Lipinska K et al (2014) Applying caspase-1 inhibitors for inflammasome assays in human whole blood. J Immunol Methods 411:66–69

    Article  Google Scholar 

  • Lou Y, Zhao X (2011) A reaction–diffusion malaria model with incubation period in the vector population. J Math Biol 62:543–568

    Article  MathSciNet  MATH  Google Scholar 

  • Ma S (2001) Traveling wavefronts for delayed reaction–diffusion models via a fixed point theorem. J Differ Equ 171:294–314

    Article  MATH  Google Scholar 

  • Magal P, Zhao XQ (2005) Global attractors and steady states for uniformly persistent dynamical systems. SIAM J Math Anal 37:251–275

    Article  MathSciNet  MATH  Google Scholar 

  • Martin RH, Smith HL (1990) Abstract functional differential equations and reaction–diffusion systems. Trans Am Math Soc 321:1–44

    MathSciNet  MATH  Google Scholar 

  • Miller M, Wei S, Parker I, Cahalan M (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296:1869–1873

    Article  Google Scholar 

  • Muro-Cacho CA, Pantaleo G, Fauci AS (1995) Analysis of apoptosis in lymph nodes of HIV-infected persons. Intensity of apoptosis correlates with the general state of activation of the lymphoid tissue and not with stage of disease or viral burden. J Immunol 154:5555–5566

    Google Scholar 

  • Nakaoka S, Iwami S, Sato K (2016) Dynamics of HIV infection in lymphoid tissue network. J Math Biol 72:909–938

    Article  MathSciNet  MATH  Google Scholar 

  • Neubert MG, Parker IM (2004) Projecting rates of spread for invasive species. Risk Anal 24:817–831

    Article  Google Scholar 

  • Painter KJ, Hillen T (2002) Volume-filling and quorum-sensing in models for chemosensitive movement. Can Appl Math Q 10:501–543

    MathSciNet  MATH  Google Scholar 

  • Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD (1996) HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271:1582–1586

    Article  Google Scholar 

  • Perelson AS, Essunger P, Cao Y, Vesanen M, Hurley A, Saksela K, Markowitz M, Ho DD (1997) Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387:188–191

    Article  Google Scholar 

  • Smith HL (1995) Monotone dynamic systems: an introduction to the theory of competitive and cooperative systems. Mathematical surveys and monographs, vol 41. American Mathematical Society, Providence

    Google Scholar 

  • Smith HL, Zhao X (2001) Robust persistence for semidynamical systems. Nonlinear Anal 47:6169–6179

    Article  MathSciNet  MATH  Google Scholar 

  • Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832

    Article  Google Scholar 

  • Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481:278–286

    Article  Google Scholar 

  • Thieme HR (2009) Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J Appl Math 70:188–211

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme HR, Zhao X (1992) Convergence results and Poincar’e–Bendixson trichotomy for asymptotically autonomous differential equations. J Math Biol 30:755–763

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme HR, Zhao X (2001) A non-local delayed and diffusive predator–prey model. Nonlinear Anal Real World Appl 2:145–160

    Article  MathSciNet  MATH  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H (2011) Spreading speeds and traveling waves for non-cooperative reaction–diffusion systems. J Nonlinear Sci 21:747–783

    Article  MathSciNet  MATH  Google Scholar 

  • Wang K, Wang W (2008) Dynamics of an HBV model with diffusion and delay. J Theor Biol 253:36–44

    Article  MathSciNet  Google Scholar 

  • Wang H, Wang X (2016) Traveling wave phenomena in a Kermack–McKendrick SIR model. J Dyn Diff Equ 28:143–166

    Article  MathSciNet  MATH  Google Scholar 

  • Wang W, Zhao X (2011) A nonlocal and time-delayed reaction–diffusion model of dengue transmission. SIAM J Appl Math 71:147–168

    Article  MathSciNet  MATH  Google Scholar 

  • Wang W, Zhao X (2012) Basic reproduction numbers for reaction–diffusion epidemic model. SIAM J Appl Dyn Syst 11:1652–1673

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Wang H, Wu J (2012a) Traveling waves of diffusive predator–prey systems: disease outbreak propagation. Discrete Contin Dyn Syst A 32:3303–3324

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Z, Wu J, Liu R (2012b) Traveling waves of Avian influenza spread. Proc Am Math Soc 149:3931–3946

    Article  MATH  Google Scholar 

  • Wang J, Yang J, Kuniya T (2016) Dynamics of a PDE viral infection model incorporating cell-to-cell transmission. J Math Anal Appl 444:1542–1564

    Article  MathSciNet  MATH  Google Scholar 

  • Wang W, Ma W, Lai X (2017) A diffusive virus infection dynamic model with nonlinear functional response, absorption effect and chemotaxis. Commun Nonlinear Sci Numer Simul 42:585–606

    Article  MathSciNet  Google Scholar 

  • Weinberger H, Lewis M, Li B (2002) Analysis of linear determinacy for spread in cooperative models. J Math Biol 45:183–218

    Article  MathSciNet  MATH  Google Scholar 

  • Wu J (1996) Theory and applications of partial functional differential equations. Springer, New York

    Book  MATH  Google Scholar 

  • Xu R, Ma Z (2009) An HBV model with diffusion and time delay. J Theor Biol 257:499–509

    Article  MathSciNet  Google Scholar 

  • Zhao X (2003) Dynamical systems in population biology. Springer, New York

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 11371230), Shandong Provincial Natural Science Foundation, China (No. ZR2015AQ001), a Project for Higher Educational Science and Technology Program of Shandong Province of China (No. J13LI05), SDUST Research Fund (2014TDJH102), and Joint Innovative Center for Safe and Effective Mining Technology and Equipment of Coal Resources, Shandong Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongqian Zhang.

Appendices

Appendix A

1.1 Proof of Theorem 2.1

For any \(\phi =(\phi _1,\phi _2,\phi _3,\phi _4)\in [\mathbf 0 ,\mathbf M ]_\mathbb {C}\) and any \(\acute{k}\ge 0\), we easily obtain that

$$\begin{aligned} \phi +\acute{k}\mathscr {F}(\phi )= & {} \left( \begin{array}{c} \displaystyle \phi _1+\acute{k}\Big (\xi (x)-d_U\phi _1(0,x)\Big ) -\acute{k}\frac{\beta (x)\phi _1(0,x) \phi _4(0,x)}{1+a\phi _4(0,x)}-\acute{k}\frac{q(x)\phi _1(0,x) \phi _3(0,x)}{1+b\phi _3(0,x)}\\ \displaystyle \phi _2+\acute{k}\int _{\varOmega } {\varGamma (\tau ,x,y)\frac{\beta (y)\phi _1(-\,\tau ,y) \phi _4(-\,\tau ,y)}{1+a\phi _4(-\,\tau ,y)}}\hbox {d}y-\acute{k}\Big (d_V(x)+\alpha _1(x)\Big )\phi _2(0,x)\\ \displaystyle \phi _3+\acute{k}\alpha _2(x)\phi _2(0,x)-\acute{k}d_M\phi _3(0,x)\\ \displaystyle \phi _4+\acute{k}k(x)\phi _2(0,x)-\acute{k}d_\omega \phi _4(0,x)\\ \end{array} \right) \\\ge & {} \left( \begin{array}{c} \displaystyle \Bigg (1-\Big (\acute{k}d_U+\frac{\acute{k}\overline{\beta }}{a}+\frac{\acute{k}\overline{q}}{b}\Big )\Bigg )\phi _1\\ \Big (1-\acute{k}(\overline{d}_V+\overline{\alpha }_1)\Big )\phi _2\\ \displaystyle (1-\acute{k}d_M)\phi _3\\ \displaystyle (1-\acute{k}d_\omega )\phi _4\\ \end{array} \right) \ge \left( \begin{array}{c} \displaystyle 0\\ \displaystyle 0\\ \displaystyle 0\\ \displaystyle 0\\ \end{array} \right) . \end{aligned}$$

For

$$\begin{aligned} 0<\acute{k}\le \min \left\{ \frac{1}{d_U+\frac{\overline{\beta }}{a}+\frac{\overline{q}}{b}},\ \frac{1}{\overline{d}_V+\overline{\alpha }_1},\ \frac{1}{d_M},\ \frac{1}{d_\omega }\right\} , \end{aligned}$$

we have that

$$\begin{aligned} \phi +\acute{k}\mathscr {F}(\phi )= & {} \left( \begin{array}{c} \displaystyle \phi _1+\acute{k}\Big (\xi (x)-d_U\phi _1(0,x)\Big ) -\frac{\acute{k}\beta (x)\phi _1(0,x) \phi _4(0,x)}{1+a\phi _4(0,x)}-\frac{\acute{k}q(x)\phi _1(0,x) \phi _3(0,x)}{1+b\phi _3(0,x)}\\ \displaystyle \phi _2+\acute{k}\int _{\varOmega } {\varGamma (\tau ,x,y)\frac{\beta (y)\phi _1(-\,\tau ,y) \phi _4(-\,\tau ,y)}{1+a\phi _4(-\,\tau ,y)}}\hbox {d}y-\acute{k}\Big (d_V(x)+\alpha _1(x)\Big )\phi _2(0,x)\\ \displaystyle \phi _3+\acute{k}\alpha _2(x)\phi _2(0,x)-\acute{k}d_M\phi _3(0,x)\\ \displaystyle \phi _4+\acute{k}k(x)\phi _2(0,x)-\acute{k}d_\omega \phi _4(0,x)\\ \end{array} \right) \\\le & {} \left( \begin{array}{c} \displaystyle \frac{\overline{\xi }}{d_U}\\ \displaystyle \frac{\acute{k}\overline{\beta }\ \overline{\xi }}{d_Ua}+\Big (1-\acute{k}(\underline{d}_V+\underline{\alpha }_1)\Big )\frac{\overline{\xi }\ \overline{\beta }}{ad_U(d_I+\underline{\alpha }_1)}\\ \displaystyle \acute{k}\overline{\alpha }_2\frac{\overline{\xi }\ \overline{\beta }}{ad_U(\underline{d}_V+\underline{\alpha }_1)}+(1-\acute{k}d_M)\frac{\overline{\alpha }_2\overline{\xi }\ \overline{\beta }}{d_Mad_U(\underline{d}_V+\underline{\alpha }_1)}\\ \displaystyle \acute{k}\overline{k}\frac{\overline{\xi }\ \overline{\beta }}{ad_U(\underline{d}_V+\underline{\alpha }_1)}+(1-\acute{k}d_\omega )\frac{\overline{k}\ \overline{\xi }\ \overline{\beta }}{d_\omega ad_U(\underline{d}_V+\underline{\alpha }_1)} \end{array} \right) \\= & {} \left( \begin{array}{c} \displaystyle \frac{\overline{\xi }}{d_U}\\ \displaystyle \frac{\overline{\xi }\ \overline{\beta }}{ad_U(\underline{d}_V+\underline{\alpha }_1)}\\ \displaystyle \frac{\overline{\alpha }_2\overline{\xi }\ \overline{\beta }}{d_Mad_U(\underline{d}_V+\underline{\alpha }_1)}\\ \displaystyle \frac{\overline{k}\ \overline{\xi }\ \overline{\beta }}{d_\omega ad_U(\underline{d}_V+\underline{\alpha }_1)}\\ \end{array} \right) =\mathbf M . \end{aligned}$$

Therefore, it then follows that \(\phi +\acute{k}\mathscr {F}(\phi )\in [\mathbf 0 ,\mathbf M ]_{\mathbb {C}}\). This implies that

$$\begin{aligned} \mathop {\lim }\limits _{\acute{k} \rightarrow 0^{+} }\frac{1}{\acute{k}}\mathrm{dist}\Big (\phi +\acute{k}\mathscr {F}(\phi ),[\mathbf 0 ,\mathbf M ]_{\mathbb {C}}\Big )=0, \end{aligned}$$

for all \(\phi \in [\mathbf 0 ,\mathbf M ]_{\mathbb {C}}.\) From Corollary 4 in Martin and Smith (1990) (see, also Wu 1996, Corollary 8.1.3), we obtain the conclusion. The proof is completed. \(\square \)

Appendix B

1.1 Proof of Lemma 4.1

For any fixed \(\phi =(\phi _1,\phi _2,\phi _3,\phi _4) \in \mathbb {C_{+}}\), from the first equation of model (3), we obtain that

$$\begin{aligned} \frac{\partial U(x,t)}{\partial t}\le D_0\Delta U+\overline{\xi }-d_UU(x,t). \end{aligned}$$

Then, the comparison principle implies there exists \(t_1(\phi )>0\) such that \(U(x,t)\le \frac{2\overline{\xi }}{d_U}=:B_1\) for \(t>t_1\).

From the second equation of model (3), it then follows that

$$\begin{aligned} \frac{\partial V(x,t)}{\partial t}\le D_0\Delta V+\frac{\overline{\beta }B_1}{a}-(\underline{d}_V+\underline{\alpha }_1) V(x,t). \end{aligned}$$

Again, the comparison principle implies there exists \(t_2(\phi )>0\) such that \(V(x,t)\le \frac{2\overline{\beta }B_1}{a(\underline{d}_V+\underline{\alpha }_1)}=:B_2\) for \(t>t_2\).

From the third equation of model (3), we get that

$$\begin{aligned} \frac{\partial M(x,t)}{\partial t}\le D_1\Delta M+\overline{\alpha }_2B_2-d_MM(x,t). \end{aligned}$$

Again, there exists \(t_3(\phi )>0\) such that \(M(x,t)\le \frac{2\overline{\alpha }_2B_2}{d_M}=:B_3\) for \(t>t_3\).

From the fourth equation of model (3), we obtain that

$$\begin{aligned} \frac{\partial \omega (x,t)}{\partial t}\le D_2\Delta \omega +\overline{k}B_2-d_\omega \omega (x,t). \end{aligned}$$

Again, there exists \(t_4(\phi )>0\) such that \(\omega (x,t)\le \frac{2\overline{k}B_2}{d_\omega } =:B_4\) for \(t>t_4\).

Therefore, the solutions of model (3) are ultimately bounded with respect to the maximum norm. The solution semiflow \(\varPhi (t)=u(t,.):\ \mathbb {C_{+}}\rightarrow \mathbb {C_{+}}\) is point dissipative. By Theorem 2.2.6 in Wu (1996), we get that \(\varPhi (t)\) is compact for any \(t > \tau \). Therefore, from Theorem 3.4.8 in Hale (1988), we know that \(\varPhi (t)=u(t,.)\) has a compact global attractor in \(\mathbb {C_{+}}\). The proof is completed. \(\square \)

1.2 Proof of Lemma 4.2

From model (3), we easily obtain that

$$\begin{aligned} \left\{ {\begin{array}{l} \displaystyle \frac{\partial V(x,t)}{\partial t} \ge D_0\Delta V- (\alpha _1(x)+d_V(x))V(x,t),\\ \displaystyle \frac{\partial M(x,t)}{\partial t} \ge D_1\Delta M- d_MM(x,t),\\ \displaystyle \frac{\partial \omega (x,t)}{\partial t} \ge D_2\Delta \omega -d_\omega \omega (x,t),\\ \displaystyle \frac{\partial V(x,t)}{\partial \nu }=\frac{\partial M(x,t)}{\partial \nu }=\frac{\partial \omega (x,t)}{\partial \nu }=0,\ x\in \partial \varOmega . \end{array}} \right. \end{aligned}$$

If \(V(t_0,\cdot , \phi )\not \equiv 0\), \(M(t_0,\cdot , \phi )\not \equiv 0\) and \(\omega (t_0,\cdot , \phi )\not \equiv 0\), the comparison principle implies that \(V(t,\cdot , \phi )>0\), \(M(t,\cdot , \phi )>0\), and \(\omega (t,\cdot , \phi )>0\) for \(t> t_0\), \(x\in \overline{\varOmega }\), that is, the conclusion (i) holds.

From model (3), we easily obtain that

$$\begin{aligned} \begin{aligned} \displaystyle \frac{\partial U(x,t)}{\partial t}&\ge D_0\Delta U+\underline{\xi }-\Big (d_U+\frac{\overline{\beta }}{a}+\frac{\overline{q}}{b}\Big )U(x,t). \end{aligned} \end{aligned}$$

Let \(v(x,t,\phi )\) be the solution of

$$\begin{aligned} \left\{ {\begin{array}{l} \displaystyle \frac{\partial v}{\partial t} \displaystyle = D_0\Delta v+\underline{\xi }-\Big (d_U+\frac{\overline{\beta }}{a}+\frac{\overline{q}}{b}\Big )v,\\ \displaystyle \frac{\partial v}{\partial \nu }=0,\ x\in \partial \varOmega ,\\ \displaystyle v(0,x)=\phi (0,x). \end{array}} \right. \end{aligned}$$

It then follows that \(U(t,x,\phi )\ge v(t,x,\phi )>0\) for all \(t>0\), and \(x\in \overline{\varOmega }\). Moreover, by Lemma 3.1 and the comparison principle, we obtain that

$$\begin{aligned} \mathop {\liminf }\limits _{t \rightarrow \infty }U(t,\cdot , \phi ) \ge \frac{\underline{\xi }}{d_U+\frac{\overline{\beta }}{a}+ \frac{\overline{q}}{b}} \end{aligned}$$

uniformly for \(x\in \overline{\varOmega }.\) The proof is completed. \(\square \)

1.3 Proof of Lemma 4.3

For any given \(\phi \in \mathbb {C_{+}}\) with \(\phi _2(0)\not \equiv 0\) and \(\phi _4(0)\not \equiv 0\), let \(u(t,x,\phi )=(U(t,x),V(x,t), M(t,x),\omega (t,x))\). In view of the parabolic maximum principle and Lemma 4.2, from model (3), we easily get that

$$\begin{aligned} \begin{aligned} V(t,x)>0,\ \omega (t,x)>0,\ \ \ \forall t>0,\ x\in \overline{\varOmega }. \end{aligned} \end{aligned}$$

By Lemma 3.3, there exists \(\tau _1>0\) such that \(\overline{\lambda }_0(\widehat{U}(x)-\tau _1)>0\). Suppose, by contradiction, we assume that there exists some \(\phi \in \mathbb {C_{+}}\) with \(\phi _2(0)\not \equiv 0\) and \(\phi _4(0)\not \equiv 0\) such that

$$\begin{aligned} \mathop {\limsup }\limits _{t \rightarrow \infty }\parallel u(t,\cdot ,\phi )-\left( \widehat{U}(x),0,0,0\right) \parallel _{\mathbb {C_{+}}}< \tau _1. \end{aligned}$$

Then, there exists a sufficiently large positive number \(T_1\) such that

$$\begin{aligned} \widehat{U}(x)-\tau _1<U(x,t)<\widehat{U}(x)+\tau _1,\ M(x,t)<\tau _1,\ \omega (x,t)<\tau _1,\ \ \ \forall t\ge T_1,\ x\in \overline{\varOmega }. \end{aligned}$$

Therefore, we obtain the following model

$$\begin{aligned} \left\{ {\begin{array}{ll} \displaystyle \frac{\partial v_2}{\partial t}&{}\ge D_0\Delta v_2 +\int _{\varOmega } {\varGamma (\tau ,x,y)\frac{\beta (y) \left( \widehat{U}(y)-\tau _1\right) v_4(y,t-\tau )}{1+a\tau _1}}\hbox {d}y\\ &{}\quad -\,\Big (\alpha _1(x)+d_V(x)\Big )v_2,\\ \displaystyle \frac{\partial v_4}{\partial t}&{}\ge D_2\Delta v_4+k(x)v_2-d_\omega v_4. \end{array}} \right. \end{aligned}$$

Let \(\psi \) be the positive eigenfunction associated with \(\overline{\lambda }_0(\widehat{U}(x)-\tau _1)\). Then, we obtain that

$$\begin{aligned} \left\{ {\begin{array}{ll} \displaystyle \frac{\partial u_2}{\partial t}&{}= D_0\Delta u_2+ \int _{\varOmega } {\varGamma (\tau ,x,y)\frac{\beta (y) \left( \widehat{U}(y)-\tau _1\right) u_4(y,t-\tau )}{1+a\tau _1}}\hbox {d}y\\ &{}\quad -\,\Big (\alpha _1(x)+d_V(x)\Big )u_2,\\ \displaystyle \frac{\partial u_4}{\partial t}&{}= D_2\Delta u_4+k(x)u_2-d_\omega u_4. \end{array}} \right. \end{aligned}$$

admits a solution \(u(t,x)=e^{\overline{\lambda }_0(\widehat{U}(x)-\tau _1) t}(\psi _1(x),\ \psi _2(x))\). Since \(u(t,x,\phi _0)\gg 0\) for all \(t>0\) and \(x\in \overline{\varOmega }\), there exists \(\eta >0\) such that

$$\begin{aligned}\Big (V(x,t),\ \omega (x,t)\Big )\ge \eta \Big (u_2(x,t),\ u_4(x,t)\Big ),\ \ \ \ \ \forall t\in [T_1-\tau ,T_1],\ \ \ x\in \overline{\varOmega }.\end{aligned}$$

By the comparison principle, we have that

$$\begin{aligned}(V(x,t),\ \omega (x,t))\ge \eta e^{\overline{\lambda }_0(\widehat{U}(x)-\tau _1) t}(\psi _1(x),\ \psi _2(x)),\quad \forall t>T_1,\ \ \ x\in \overline{\varOmega }.\end{aligned}$$

Since \(\lambda _0(\widehat{U}(x)-\tau _1)>0\), we obtain that \(\mathop {\lim }\nolimits _{t \rightarrow +\infty }V(t,x)=\infty ,\ \mathop {\lim }\nolimits _{t \rightarrow +\infty }\omega (t,x)=\infty ,\) which is a contradiction. We complete the proof. \(\square \)

Appendix C

1.1 Proof of Lemma 5.3

If \(t>-\frac{1}{\varepsilon }\ln q_1\), then \(\underline{\phi }(t)=0\). It is easy to obtain the result. If \(t\le -\frac{1}{\varepsilon }\ln q_1\), it then follows that

$$\begin{aligned}&d_1\ddot{\underline{\phi }}(t)-c\dot{\underline{\phi }}(t)+ \frac{\beta \Big (\frac{\xi }{d_U}-\underline{\phi }(t)\Big )\underline{\gamma }(t)}{1+a \underline{\gamma }(t)} -d_U\underline{\phi }(t)+\frac{q\Big (\frac{\xi }{d_U}-\underline{\phi }(t)\Big )\underline{\psi }(t)}{1+b\underline{\psi }(t)}\\&\quad =d_1\ddot{\underline{\phi }}(t)-c\dot{\underline{\phi }}(t)+ \frac{\beta \Big (\frac{\xi }{d_U}-\underline{\phi }(t)\Big )\underline{\gamma }(t)}{1+a \underline{\gamma }(t)} -d_U\underline{\phi }(t)\\&\quad \quad +\,\frac{qU_0\underline{\psi }(t)(1+b\underline{\psi }(t))-qU_0b\underline{\psi }(t)\underline{\psi }(t)-q\underline{\phi }(t)\underline{\psi }(t)}{1+b\underline{\psi }(t)}\\&\quad \ge d_1\ddot{\underline{\phi }}(t)-c\dot{\underline{\phi }}(t)+ \frac{\beta \Big (\frac{\xi }{d_U}-\underline{\phi }(t)\Big )\underline{\gamma }(t)}{1+a \underline{\gamma }(t)}\\&\quad \quad -\,d_U\underline{\phi }(t)+qU_0\underline{\psi }(t)-qU_0b\underline{\psi }(t)^{2}-q\underline{\phi }(t)\underline{\psi }(t)\\&\quad =d_1\ddot{\underline{\phi }}(t)-c\dot{\underline{\phi }}(t) +\frac{\beta \xi \underline{\gamma }(t)}{d_U}\\&\quad \quad -\,d_U\underline{\phi }(t)-\frac{\frac{\beta \xi a}{d_U}\underline{\gamma }(t)\underline{\gamma }(t)}{1+a\underline{\gamma }(t)}-\frac{\beta \underline{\phi }(t)\underline{\gamma }(t)}{1+a \underline{\gamma }(t)}+qU_0\underline{\psi }(t)-qU_0b\underline{\psi }(t)^{2}-q\underline{\phi }(t)\underline{\psi }(t)\\&\quad \ge d_1\ddot{\underline{\phi }}(t)-c\dot{\underline{\phi }}(t) +\frac{\beta \xi \underline{\gamma }(t)}{d_U}\\&\quad \quad -\,d_U\underline{\phi }(t)-\frac{\beta \xi a}{d_U}\underline{\gamma }(t)\underline{\gamma }(t)-\beta \underline{\phi }(t)\underline{\gamma }(t)+qU_0\underline{\psi }(t)-qU_0b\underline{\psi }(t)^{2}-q\underline{\phi }(t)\underline{\psi }(t)\\&\quad \ge -q_1\Bigg (h_1(\lambda _c+\varepsilon ,c)\eta _1 +\frac{\beta \xi \eta _4}{d_U}\Bigg )e^{(\lambda _c+\varepsilon )t}-\Bigg (\frac{\beta \xi a\eta _4^{2}}{d_U}+\beta \eta _1\eta _4+qU_0b\eta _3^2+q\eta _1\eta _3\Bigg )e^{2\lambda _ct}\\&\quad \ge -\left[ q_1\Bigg (h_1(\lambda _c+\varepsilon ,c)\eta _1 +\frac{\beta \xi \eta _4}{d_U}\Bigg )+\frac{\beta \xi a\eta _4^{2}}{d_U}+\beta \eta _1\eta _4+qU_0b\eta _3^2+q\eta _1\eta _3\right] e^{(\lambda _c+\varepsilon )t}\ge 0. \end{aligned}$$

From (16) and Lemma 5.1, it then follows that \(h_1(\lambda _c+\varepsilon ,c)\eta _1 +\frac{\beta \xi \eta _4}{d_U}<0\). Then for sufficiently large \(q_1\), we obtain that the last inequality holds.

If \(t>-\frac{1}{\varepsilon }\ln q_1\), then \(\underline{\varphi }(t)=0\). We easily obtain the result. If \(t\le -\frac{1}{\varepsilon }\ln q_1\), it then follows that

$$\begin{aligned} \begin{aligned} \displaystyle&d_2\ddot{\underline{\varphi }}(t)-c\dot{\underline{\varphi }}(t) +{\int }_{\mathbb {R} } {\varGamma (\tau ,y)\frac{ \beta \Big (\frac{\xi }{d_U}-\overline{\phi }(y,t-y-c\tau )\Big ) \underline{\gamma }(y,t-y-c\tau )}{1+a\underline{\gamma }(y,t-y-c\tau )}}\hbox {d}y\\&\quad \quad \displaystyle -\,d_V\underline{\varphi }(t)-\alpha _1\underline{\varphi }(t)\\&\quad \ge d_2\ddot{\underline{\varphi }}(t)-c\dot{\underline{\varphi }}(t)+ {\int }_{\mathbb {R} } {\varGamma (\tau ,y)\frac{\beta \xi }{d_U}\underline{\gamma }(t-y-c\tau )}\hbox {d}y-(d_V+\alpha _1)\underline{\varphi }(t)\\&\quad \quad -{\int }_{\mathbb {R} } {\varGamma (\tau ,y)\frac{\frac{\beta \xi a}{d_U}\underline{\gamma }(t-y-c\tau )\underline{\gamma }(t-y-c\tau )}{1+a \underline{\gamma }(t-y-c\tau )}}\hbox {d}y\\&\quad \quad -\,{\int }_{\mathbb {R} } {\varGamma (\tau ,y)\frac{\beta \overline{\phi }(t-y-c\tau )\underline{\gamma }(t-y-c\tau )}{1+a \underline{\gamma }(t-y-c\tau )}}\hbox {d}y\\&\quad \ge -\Bigg [ q_1\Bigg (h_2(\lambda _c+\varepsilon ,c)\eta _2 +\frac{\beta \xi \eta _4e^{\tau (d_2(\lambda _c+\varepsilon )^{2}-c (\lambda _c+\varepsilon ))}}{d_U}\Bigg )\\&\quad \quad +\frac{\beta \xi a\eta _4^{2}e^{\tau (d_2(\lambda _c+\varepsilon )^{2}-c (\lambda _c+\varepsilon ))}}{d_U}+\beta \eta _1\eta _4e^{\tau (d_2(\lambda _c+\varepsilon )^{2}-c (\lambda _c+\varepsilon ))}\Bigg ]e^{(\lambda _c+\varepsilon )t}\ge 0. \end{aligned} \end{aligned}$$

Similarly, from (16) and Lemma 5.1, it then follows that \(h_2(\lambda _c+\varepsilon ,c)\eta _2 +\frac{\beta \xi \eta _4e^{\tau (d_2(\lambda _c+\varepsilon )^{2}-c (\lambda _c+\varepsilon ))}}{d_U}<0\). Then for sufficiently large \(q_1\), we obtain that the last inequality holds.

It can be similarly shown that

$$\begin{aligned} d_3\ddot{\underline{\psi }}(t)-c\dot{\underline{\psi }}(t) +\alpha _2\underline{\varphi }(t)-d_M\underline{\psi }(t)\ge 0,\ \ \ d_4\ddot{\underline{\gamma }}(t)-c\dot{\underline{\gamma }}(t) +k\underline{\varphi }(t)-d_\omega \underline{\gamma }(t)\ge 0. \end{aligned}$$

We complete the proof. \(\square \)

1.2 Proof of Lemma 5.4

By Lemma 5.2 and simple computations, we easily obtain that

$$\begin{aligned} \begin{aligned}&\beta _1\phi (t)+\frac{\beta \Big (\frac{\xi }{d_U}-\phi (t)\Big )\gamma (t)}{1+a \gamma (t)}-d_U\phi (t)+\frac{q\Big (\frac{\xi }{d_U}-\phi (t)\Big )\psi (t)}{1+b\psi (t)}\\&\le \beta _1\overline{\phi }(t)+\frac{\beta \Big (\frac{\xi }{d_U}-\overline{\phi }(t)\Big )\overline{\gamma }(t)}{1+a \overline{\gamma }(t)} -d_U\overline{\phi }(t)+\frac{q\Big (\frac{\xi }{d_U}-\overline{\phi }(t)\Big )\overline{\psi }(t)}{1+b\overline{\psi }(t)}\\&\le \beta _1\overline{\phi }(t)-d_1\ddot{\overline{\phi }}(t) +c\dot{\overline{\phi }}(t). \end{aligned} \end{aligned}$$

For \(t>\frac{1}{\lambda _c}\ln \frac{\xi }{d_U \eta _1}\triangleq t_1\), by using integration of parts twice, it then follows that

$$\begin{aligned} \begin{aligned} F_1(\phi ,\varphi ,\psi ,\gamma )(t)&=\frac{1}{\rho _1}\left[ \int _{-\infty }^t {e^{\lambda _{11}(t-s)}H(\phi ,\varphi ,\psi ,\gamma )(s)}\hbox {d}s\right. \\ {}&\left. \quad +\int _{t }^\infty {e^{\lambda _{12}(t-s)}H(\phi ,\varphi ,\psi ,\gamma )(s)}\hbox {d}s\right] \\&\le \frac{1}{\rho _1}\left[ \int _{-\infty }^{t_1} {e^{\lambda _{11}(t-s)}\Big (\beta _1\overline{\phi }(t)-d_1\ddot{\overline{\phi }} +c\dot{\overline{\phi }}\Big )}\hbox {d}s\right] \\&\ \ \ \ +\frac{1}{\rho _1}\left[ \int _{t_1 }^{t} {e^{\lambda _{11}(t-s)}\Big (\beta _1\overline{\phi }(t)-d_1\ddot{\overline{\phi }} +c\dot{\overline{\phi }}\Big )}\hbox {d}s\right] \\&\ \ \ \ +\frac{1}{\rho _1}\left[ \int _{t }^{+\infty } {e^{\lambda _{11}(t-s)}\Big (\beta _1\overline{\phi }(t)-d_1\ddot{\overline{\phi }} +c\dot{\overline{\phi }}\Big )}\hbox {d}s\right] \\&=\overline{\phi }(t)+\frac{1}{\lambda _{12}-\lambda _{11}}e^{\lambda _{11}(t-t_1)} \Big (\dot{\overline{\phi }}(t_1+0)-\dot{\overline{\phi }}(t_1-0)\Big )\le \overline{\phi }(t). \end{aligned} \end{aligned}$$

By employing the similar method above, we can prove \(F_1(\phi ,\varphi ,\psi ,\gamma )(t)\le \overline{\phi }(t)\) for \(t\le t_1\). Thus, for any \(t\ge 0\), we have that \(F_1(\phi ,\varphi ,\psi ,\gamma )(t)\le \overline{\phi }(t)\).

If \(t<t^*\), it then follows that

$$\begin{aligned} \begin{aligned}&\beta _1\phi (t)+\frac{\beta \Big (\frac{\xi }{d_U}-\phi (t)\Big )\gamma (t)}{1+a \gamma (t)}-d_U\phi (t)+\frac{q\Big (\frac{\xi }{d_U}-\phi (t)\Big )\psi (t)}{1+b\psi (t)}\\&\quad \ge \beta _1 \underline{\phi }(t)-d_U\underline{\phi }(t)+\frac{\beta \Big (\frac{\xi }{d_U}-\underline{\phi }(t)\Big )\underline{\gamma }(t)}{1+a \underline{\gamma }(t)}+\frac{q\Big (\frac{\xi }{d_U}-\underline{\phi }(t)\Big )\underline{\psi }(t)}{1+b\underline{\psi }(t)}\\&\quad \ge \beta _1\underline{\phi }(t)-d_1\ddot{\underline{\phi }} +c\dot{\underline{\phi }}=D_1\underline{\phi }(t). \end{aligned} \end{aligned}$$

If \(t\ge t^*\), it then follows that

$$\begin{aligned} \begin{aligned}&\beta _1\phi (t)+\frac{\beta \Big (\frac{\xi }{d_U}-\phi (t)\Big )\gamma (t)}{1+a \gamma (t)}-d_U\phi (t)+\frac{q\Big (\frac{\xi }{d_U}-\phi (t)\Big )\psi (t)}{1+b\psi (t)}\\&\quad \ge (\beta _1-d_U)\underline{\phi }(t)=0=D_1\underline{\phi }(t). \end{aligned} \end{aligned}$$

Therefore, by Lemma 3.2 in Wang et al. (2012a), it then follows that \(F_1(\phi ,\varphi ,\psi ,\gamma )\ge D_1^{-1}(D_1\underline{\phi }(t))\ge \underline{\phi }(t).\) From the discussions above, for any \(t\ge 0\), we easily obtain that \( \underline{\phi }(t)\le F_1(\phi ,\varphi ,\psi ,\gamma )\le \overline{\phi }(t). \)

Similarly, it then follows that

$$\begin{aligned} \begin{aligned}&\beta _2\varphi (t)+{\int }_{\mathbb {R} } {\varGamma (\tau ,y)\frac{ \beta \Big (\frac{\xi }{d_U}-\phi (t-y-c\tau )\Big ) \gamma (t-y-c\tau )}{1+a\gamma (t-y-c\tau )}}\hbox {d}y -(\alpha _1+d_V)\varphi (t)\\&\quad \le \beta _2 \overline{\varphi }(t)-(d_V+\alpha _1)\overline{\varphi }(t) +\frac{\beta \xi }{d_U}{\int }_{\mathbb {R} } {\varGamma (\tau ,y) \overline{\gamma }(t-y-c\tau )}\hbox {d}y\\&\quad =\beta _2\overline{\varphi }(t)-d_2\ddot{\overline{\varphi }} +c\dot{\overline{\varphi }}=D_2\overline{\varphi }(t). \end{aligned} \end{aligned}$$

Consequently, by Lemma 3.2 in Wang et al. (2012a), we have \(F_2(\phi ,\varphi ,\psi ,\gamma )\le D_2^{-1}\Big (D_2\overline{\varphi }(t)\Big )=\overline{\varphi }(t)\).

If \(t<t^*\), it then follows that

$$\begin{aligned} \begin{aligned}&\beta _2\varphi (t)+{\int }_{\mathbb {R} } {\varGamma (\tau ,y)\frac{ \beta \Big (\frac{\xi }{d_U}-\phi (t-y-c\tau )\Big ) \gamma (t-y-c\tau )}{1+a\gamma (t-y-c\tau )}}\hbox {d}y -(\alpha _1+d_V)\varphi (t)\\&\quad \ge \beta _2\underline{\varphi }(t)+{\int }_{\mathbb {R} } {\varGamma (\tau ,y)\frac{ \beta \Big (\frac{\xi }{d_U}-\overline{\phi }(t-y-c\tau )\Big ) \underline{\gamma }(t-y-c\tau )}{1+a\underline{\gamma }(t-y-c\tau )}}\hbox {d}y -d_V\underline{\varphi }(t) -\alpha _1\underline{\varphi }(t)\\&\quad \ge \beta _2\underline{\varphi }(t)-d_2\ddot{\underline{\varphi }} +c\dot{\underline{\varphi }}=D_2\underline{\varphi }(t). \end{aligned} \end{aligned}$$

If \(t\ge t^*\), it then follows that

$$\begin{aligned} \begin{aligned}&\beta _2\varphi (t)+{\int }_{\mathbb {R} } {\varGamma (\tau ,y)\frac{ \beta \Big (\frac{\xi }{d_U}-\phi (t-y-c\tau )\Big ) \gamma (t-y-c\tau )}{1+a\gamma (t-y-c\tau )}}\hbox {d}y -(\alpha _1+d_V)\varphi (t)\\&\quad \ge \Big (\beta _2-(d_V+\alpha _1)\Big )\underline{\varphi }(t)\\&\quad \ge 0=D_2\underline{\varphi }(t). \end{aligned} \end{aligned}$$

A combination of the above two inequalities yields \(F_2(\phi ,\varphi ,\psi ,\gamma )\ge D_2^{-1}(D_2\underline{\varphi }(t))\ge \underline{\varphi }(t).\) Similarly, we can show that \(\underline{\psi }\le F_3(\phi ,\varphi ,\psi ,\gamma )\le \overline{\psi },\) \(\underline{\gamma }\le F_4(\phi ,\varphi ,\psi ,\gamma )\le \overline{\gamma }.\) We complete the proof. \(\square \)

1.3 Proof of Lemma 5.5

We firstly check that \(H=(H_1,H_2,H_3,H_4):\varPi \rightarrow \varPi \) is continuous with respect to the norm \(|{\cdot }|_{\mu }\) in \(B_{\mu }(\mathbb {R},\mathbb {R}^{4}).\) In fact, for any \(\varPhi _{11}, \varPsi _{11} \in C(\mathbb {R},\mathbb {R}^{4})\), it then follows that

$$\begin{aligned} \begin{aligned}&\mid H_1(\varPhi _{11})(t)-H_1(\varPsi _{11})(t)\mid e^{-\mu |t|}\\&\quad \le (d_U+\beta _1)|\phi _1(t)-\phi _2(t)|e^{-\mu |t|}\\ {}&\qquad + \left| \frac{\beta \Big (\frac{\xi }{d_U}-\phi _1(t)\Big )\gamma _1(t)}{1+a \gamma _1(t)}-\frac{\beta \Big (\frac{\xi }{d_U}-\phi _2(t)\Big )\gamma _2(t)}{1+a \gamma _2(t)}\right| e^{-\mu |t|}\\&\quad \quad + \left| \frac{\beta \Big (\frac{q}{d_U}-\phi _1(t)\Big )\psi _1(t)}{1+b \psi _1(t)}-\frac{\beta \Big (\frac{q}{d_U}-\phi _2(t)\Big )\psi _2(t)}{1+b \psi _2(t)}\right| e^{-\mu |t|}\\&\quad \le \Big (d_U+\beta _1+\frac{\beta }{a}+\frac{q}{b}\Big )|\phi _1(t)-\phi _2(t)|e^{-\mu |t|} + \frac{2\beta \xi }{d_U}|\gamma _1(t)-\gamma _2(t)|e^{-\mu |t|}\\&\quad \quad +\frac{2q\xi }{d_U}|\psi _1(t)-\psi _2(t)|e^{-\mu |t|}\\&\quad =\Big (d_U+\beta _1+\frac{\beta }{a}+\frac{q}{b}+\frac{2\beta \xi }{d_U}+\frac{2q\xi }{d_U}\Big ) |\varPhi _{11}(t)-\varPsi _{11}(t)|e^{-\mu |t|}.\\ \end{aligned} \end{aligned}$$

For any given \(\varepsilon >0\), choose \(0<\delta _1<\displaystyle \frac{\varepsilon }{d_U+\beta _1+\frac{\beta }{a}+\frac{q}{b}+\frac{2\beta \xi }{d_U}+\frac{2q\xi }{d_U}}\), as \(|\varPhi _{11}-\varPsi _{11}|_{\mu }<\delta _1\), then we have \(|H_1(\varPhi _{11})(t)-H_1(\varPsi _{11})(t)|e^{-\mu |t|}<\varepsilon .\) Similarly, we have that

$$\begin{aligned} \begin{aligned}&\mid H_2(\varPhi _{11})(t)-H_2(\varPsi _{11})(t)\mid e^{-\mu |t|}\le e^{-\mu |t|}\int _{\mathbb {R} } \varGamma (\tau ,y)\frac{\beta }{a}|\phi _1(t-y-c\tau )\\&\qquad -\phi _2(t-y-c\tau )|\hbox {d}y\\&\quad \quad +e^{-\mu |t|}\int _{\mathbb {R} } {\varGamma (\tau ,y)\frac{2\beta \xi }{d_U}|\gamma _1(t-y-c\tau ) -\gamma _2(t-y-c\tau )|}\hbox {d}y\\&\quad \quad + (\beta _2+d_V+\alpha _1)|\varphi _{1}(t)-\varphi _{2}(t)|e^{-\mu |t|}\\&\quad \le \Big (e^{\tau (d_2\mu ^{2}+c\mu )}\Big (\frac{\beta }{a}+\frac{2\beta \xi }{d_U}\Big )+\beta _2+d_V+\alpha _1\Big ) |\varPhi _{11}(t)-\varPsi _{11}(t)| e^{-\mu |t|}.\\ \end{aligned} \end{aligned}$$

For any given \(\varepsilon >0\), choose \(0<\delta _2=\displaystyle \frac{\varepsilon }{e^{\tau (d_2\mu ^{2}+c\mu )}\Big (\frac{\beta }{a}+\frac{2\beta \xi }{d_U}\Big )+\beta _2+d_V+\alpha _1}\), as \(|\varPhi _{11}-\varPsi _{11}|_{\mu }<\delta _2\), then we have \(|H_2(\varPhi _{11})(t)-H_2(\varPsi _{11})(t)|e^{-\mu |t|}<\varepsilon .\) Hence, \(H_2\) is continuous with respect to the norm \(|{\cdot }|_{\mu }\) in \(B_{\mu }(\mathbb {R},\mathbb {R}^{4}).\) Similarly, we can show that \(H_3\) and \(H_4\) is continuous with respect to the norm \(|{\cdot }|_{\mu }\) in \(B_{\mu }(\mathbb {R},\mathbb {R}^{4}).\)

Applying the method similar to Ma (2001), Lemma 2.4 (see, also, Li et al. (2006) Lemma 3.4), we show that F is continuous with respect to the norm \(B_{\mu }(\mathbb {R},\mathbb {R}^{4}).\) By simple computations, we have that

$$\begin{aligned}&\left| F_1(\varPhi _{11}({\cdot }))(t)-F_1(\varPsi _{11}({\cdot }))(t)\right| e^{-\mu |t|} \le \frac{e^{-\mu \mid t\mid }}{\rho _1}\Bigg (\int _{-\infty }^t e^{\lambda _{11}(t-s)}|H_1(\varPhi _{11})(s)\\&\quad \quad -H_1(\varPsi _{11})(s)|\hbox {d}s+\int _{t }^\infty {e^{\lambda _{12}(t-s)}|H_1(\varPhi _{11})(s)-H_1(\varPsi _{11})(s)|}\hbox {d}s\Bigg )\\&\quad \le \frac{Pe^{-\mu \mid t\mid }}{\rho _1}\left[ \int _{-\infty }^t {e^{\lambda _{11}(t-s)+\mu |s|}}\hbox {d}s +\int _{t }^\infty {e^{\lambda _{12}(t-s)+\mu |s|}}\hbox {d}s\right] \\&\qquad |\varPhi _{11}(t)-\varPsi _{11}(t)|e^{-\mu |t|}, \end{aligned}$$

where \(P=d_U+\beta _1+\frac{\beta }{a}+\frac{q}{b}+\frac{2\beta \xi }{d_U}+\frac{2q\xi }{d_U}.\) If \(t<0\), it then follows that

$$\begin{aligned} \begin{aligned}&\left| F_1\big (\varPhi _{11}({\cdot })\big )(t)-F_1(\varPsi _{11}({\cdot }))(t)\right| e^{-\mu |t|}\\&\quad \le \frac{Pe^{\mu t}}{\rho _1}\Big (e^{\lambda _{11}t}\int _{-\infty }^t {e^{-(\lambda _{11}+\mu )s}}\hbox {d}s+e^{\lambda _{12}t}\int _{t }^0 {e^{-(\lambda _{12}+\mu )s}}\hbox {d}s+e^{\lambda _{12}t}\int _{0 }^\infty {e^{(\mu -\lambda _{12})s}}\hbox {d}s\Big )\\&\quad \quad |\varPhi _{11}(t)-\varPsi _{11}(t)|\\&\quad \le \frac{Pe^{\mu t}}{\rho _1}\left( \frac{1}{-\lambda _{11}-\mu } +\frac{1}{\lambda _{12}+\mu } +\frac{1}{\lambda _{12}-\mu }\right) |\varPhi _{11}(t)-\varPsi _{11}(t)|.\\ \end{aligned} \end{aligned}$$

If \(t\ge 0\), we have that

$$\begin{aligned} \begin{aligned}&\left| F_1(\varPhi _{11}({\cdot }))(t)-F_1(\varPsi _{11}({\cdot }))(t)\right| e^{-\mu |t|}\\&\le \frac{Pe^{-\mu t}}{\rho _1}\Bigg (e^{\lambda _{11}t}\int _{-\infty }^0 {e^{-(\lambda _{11}+\mu )s}}\hbox {d}s+e^{\lambda _{11}t}\int _{0 }^t {e^{(\mu -\lambda _{11})s}}\hbox {d}s+e^{\lambda _{12}t}\int _{t }^\infty {e^{(\mu -\lambda _{12})s}}\hbox {d}s\Bigg )\\&\qquad |\varPhi _{11}(t)-\varPsi _{11}(t)|\\&\le \frac{Pe^{-\mu t}}{\rho _1}\left( \frac{1}{-\lambda _{11}-\mu } +\frac{1}{\mu -\lambda _{11}} +\frac{1}{\lambda _{12}-\mu }\right) |\varPhi _{11}(t)-\varPsi _{11}(t)|.\\ \end{aligned} \end{aligned}$$

Hence, it then follows that

$$\begin{aligned} \left| F_1(\varPhi _{11}({\cdot }))(t)-F_1(\varPsi _{11}({\cdot }))(t)\right| _{\mu } \le P_1 |\varPhi _{11}-\varPsi _{11}|_{\mu }, \end{aligned}$$

where

$$\begin{aligned} P_1=\frac{P}{\rho _1}\max \left\{ \frac{1}{-\lambda _{11}-\mu } +\frac{1}{\lambda _{12}+\mu } +\frac{1}{\lambda _{12}-\mu },\ \ \ \frac{1}{-\lambda _{11}-\mu } +\frac{1}{\mu -\lambda _{11}} +\frac{1}{\lambda _{12}-\mu }\right\} . \end{aligned}$$

Similarly, we can also prove that \(F_2,\ F_3\), and \(F_4\) are continuous with respect to the norm |.| in \(B_{\mu }(\mathbb {R},\mathbb {R}^{4})\). The proof is completed. \(\square \)

1.4 Proof of Lemma 5.6

By employing Arzela–Ascoli theorem, we show that the operator \(F:\varPi \rightarrow \varPi \) is compact with respect to the norm |.| in \(B_{\mu }(\mathbb {R},\mathbb {R}^{4})\). Let \(I_\mathbf k =[-\,\mathbf k ,\mathbf k ]\) with \(\mathbf k \in N\) be a compact interval on \(\mathbb {R}\). We regard \(\varPi \) as a bounded subset of \(C(I_\mathbf k ,\mathbb {R}^{4})\) equipped with the maximum norm. From Lemma 5.4, it then follows that F is uniformly bounded equipped with the maximum norm. In the following, we employ the following equalities to show that F is equi-continuous. In terms of the definition of \(F_i\) in (18) and integral representation for the derivative of \(D_i^{-1}\ (i=1,2,3,4)\), for any \((\phi ,\varphi ,\psi ,\gamma )\in \varPi \), it then follows that

$$\begin{aligned} \begin{aligned} \left| [F_1(\phi ,\varphi ,\psi ,\gamma )]'(t)\right|&\le \frac{-\lambda _{11}}{\rho _{ 1}}\int _{-\infty }^t {e^{\lambda _{ 11}(t-s)}|H_1(s)|}\hbox {d}s+ \frac{\lambda _{12}}{\rho _{ 1}}\int _{t }^\infty {e^{\lambda _{ 12}(t-s)}|H_1(s)|}\hbox {d}s\\&\le \frac{\xi }{d_U}\Big (\beta _1-d_U+\frac{\beta }{a}+\frac{q}{b}\Big ). \end{aligned} \end{aligned}$$

Similarly, we also have that

$$\begin{aligned} \begin{aligned} \left| [F_2(\phi ,\varphi ,\psi ,\gamma )]'(t)\right|&\le \frac{-\lambda _{21}}{\rho _2}\int _{-\infty }^t {e^{\lambda _{21}(t-s)}|H_2(s)|}\hbox {d}s+ \frac{\lambda _{22}}{\rho _2}\int _{t }^\infty {e^{\lambda _{22}(t-s)}|H_2(s)|}\hbox {d}s\\&\le A\Big (\frac{-\lambda _{21}}{\rho _2}\int _{-\infty }^t {e^{\lambda _{21}(t-s)}e^{\lambda _cs}}\hbox {d}s+ \frac{\lambda _{22}}{\rho _2}\int _{t }^\infty {e^{\lambda _{22}(t-s)}e^{\lambda _cs}}\hbox {d}s\Big )\\&=\frac{e^{\lambda _ct}A}{\rho _2} \Big (\frac{-\lambda _{21}}{\lambda _c-\lambda _{21}} +\frac{\lambda _{22}}{\lambda _{22}-\lambda _c}\Big ), \end{aligned} \end{aligned}$$

where

$$\begin{aligned} A=\Big (\beta _2-(d_V+\alpha _1)\Big )\eta _2 +\frac{\beta \xi \eta _4e^{\tau (d_2\lambda _c^{2}-c\lambda _c)}}{d_U}. \end{aligned}$$

Let \(\mathbf{u _n}\) be a sequence of \(\varPi \), which is viewed as a bounded subset of \(C(I_\mathbf k )\) with \(I_\mathbf k :=[-\,\mathbf k ,\mathbf k ]\). From the discussions above, we conclude that F is uniformly bounded and equi-continuous. According to the Arzela–Ascoli theorem, there exists a subsequence \(\mathbf{u _{n_\mathbf k }}\) such that \(\mathbf v _{n_\mathbf k }=F\mathbf u _{n_\mathbf k }\) converges in \(C(I_\mathbf k )\) for any \(\mathbf k \in N\). Let \(\mathbf v \) be the limit of \(\mathbf v _{n_\mathbf k }\). It is easily observe that \(\mathbf v \in C(\mathbb {R},\mathbb {R}^{4})\). Furthermore, from Lemma 5.4 and \(\varPi \) is closed, we have that \(\mathbf v \in \varPi \). Since \(\mu>\lambda _c>0\), it can be obtained that \(e^{-\mu \mid t\mid }\overline{\phi }(t)\), \(e^{-\mu \mid t\mid }\overline{\varphi }(t)\), \(e^{-\mu \mid t\mid }\overline{\psi }(t)\) and \(e^{-\mu \mid t\mid }\overline{\gamma }(t)\) are uniformly bounded on \(\mathbb {R}\). Consequently, \(\varPi \) is uniformly bounded with respect to the norm \(|{\cdot }|_{\mu }\). Therefore, it follows that the norm \(|\mathbf v _{n_\mathbf k }-\mathbf v |_{\mu }\) is uniformly bounded for all \(\mathbf k \in N\). For any \(\varepsilon >0\), there exists an integer \(Z>0\), independent of \(\mathbf v _{n_\mathbf k }\) such that \(e^{-\mu \mid t\mid }|\mathbf v _{n_\mathbf k }(x)-\mathbf v (x)|<\varepsilon \) for \(|t|>Z\) and \(\mathbf k \in N\). Due to the fact that \(\mathbf v _{n_\mathbf k }\) converges to \(\mathbf v \) on the compact interval \([-\,Z,Z]\) with respect to the maximum norm, it then follows that there exists \(K\in N\), such that \(e^{-\mu \mid t\mid }|\mathbf v _{n_\mathbf k }(x)-\mathbf v (x)|<\varepsilon \) for \(|t|\le Z\) and \(\mathbf k > K\). Consequently, it can be concluded that \(\mathbf v _{n_\mathbf k }\) converges to \(\mathbf v \) with respect to the norm \(|{\cdot }|_{\mu }\). The proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhang, T. Caspase-1-Mediated Pyroptosis of the Predominance for Driving CD4\(^{+}\) T Cells Death: A Nonlocal Spatial Mathematical Model. Bull Math Biol 80, 540–582 (2018). https://doi.org/10.1007/s11538-017-0389-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0389-8

Keywords

Mathematics Subject Classification

Navigation